
Stellarium: Scenery3d Developer Docs

Table of Contents
Versions..1
Introduction..2
Working with Stellarium..2
Class structure..2
Filesystem structure..3
Loading models..3
Rendering methods...3
Collision Detection...4
Shadow Mapping..4

Versions
• 2011-01-27 First issue of this document

• 2015-02-24 Big rewrite to document current state

Introduction
Scenery3d is a plug-in for the open-source software Stellarium. The main functionality is to render
3D meshes in front of the original Stellarium scene, which is composed of a real time sky rendering
with a static landscape skybox.

This document should give a quick start for new developers.

Working with Stellarium
As this plug-in is only part of a bigger project, here are a few pointers that should give you a better
understanding of the general Stellarium architecture.

• General information, program architecture
http://www.stellarium.org/doc/head/index.html

• Coding conventions
http://www.stellarium.org/doc/head/codingStyle.html

Class structure
• Scenery3dMgr is the main plug-in class. It is defined as a QObject (a StelModule)

exported as a plug-in module via the StelPluginInterface, implemented by
Scenery3dStelPluginInterface. It is responsible for handling user actions through
StelAction objects, and by creating a few toolbar buttons and exposing some properties
as Q_PROPERTY that can be changed by the dialog classes. It holds one instance of
Scenery3d for the actual scenery rendering and instances of Scenery3dDialog and
StoredViewDialog for the GUI.

• Scenery3dDialog is for displaying the configuration GUI window. It contains all
performance/quality options exposed by Scenery3d, and lists the sceneries that are available
for loading. It is constructed using the StelDialog class and the standard Qt .ui files.

• StoredViewDialog manages the stored viewpoints of a scene, allowing the user to
change to and create predefined views of a scene.

• SceneInfo describes the metadata of a scene, that is stored in the scenery3d.ini file
for each scene. It is primarily a plain struct, but contains some static functions for listing
scenes and loading metadata from files.

• StoredView defines a persistent view definition, containing some functions for saving
and loading.

• Scenery3d is the main scene rendering class. It is not a QObject. It manages loading,
updating and rendering the actual 3D scenery using OpenGL. This uses various helper
classes.

• ShaderMgr is a basic manager for OpenGL shaders. It can load shaders from files defined
by a series of bitflags defined by the current rendering state (enabled features such as
shadows, bump mapping etc.) and material to render (specularity, transparency...), setting
#define statements in the shaders to true or false depending on these flags to allow for
conditional compilation, allowing for the most performant shaders without depending on
branching using shader uniform variables. It caches these shaders, and also accelerates
accessing the uniform variables of the shaders by providing access through an enumeration
instead of strings.

http://www.stellarium.org/doc/head/index.html
http://www.stellarium.org/doc/head/codingStyle.html

• OBJ is an file loader for the simple text-based Wavefront .obj 3D geometry file format.
Instances of OBJ contain the loaded data of a file, and provide additional functions such as
bounding-box calculation, CPU-side (constant) transformations, OpenGL buffer
management for their data and material/texture management. The OBJ header also contains
the definitions for the vertex format (Position, Normals, Texture coordinates, Tangents) and
the material format.

• Various other classes, mathematical helpers (AABB, Frustum, Plane, Polyhedron...),
Utilities...

In a nutshell:

Scenery3dMgr

-scenery3d
-scenery3dDialog
-storedViewDialog

+propertySetters()
+propertyGetters()

Scenery3d

Scenery3dDialog StoredViewDialog

SceneInfo

+scene metadata

+loadSceneByID()
+getAllSceneIDs()

OBJ

+vertices
+models: StelModel
+materials: MTL

+transform()
+bindGL()
+uploadTexturesGL()
+uploadBuffersGL()

OBJ/MTL loader

Renderer

Plugin interface/main class

Filesystem structure
Loading a scenery is similar to loading a landscape. Each scenery is represented by a directory.
Available scenes can be found using SceneInfo::getAllSceneIDs, which works with the
StelFileMgr, listing scenes installed under the program directory, and custom scenes in the
user's home directory. Basically, it looks for directories in the scenery3d/ folder relative to the
Stellarium main directory as well as the settings folder in the user's home directory, e.g.
~/.stellarium/ on Linux systems. Scene metadata can be loaded using
SceneInfo::loadByID.

Each scene must have a scenery3d.ini file in the scene's root directory. All file paths
referenced in scenery3d.ini are treated as relative to the scene's directory. For more details about the
config file format, look at the user's documentation in Scenery3d.pdf.

Loading model files
Currently we support loading Wavefront .obj files. The class OBJ is responsible for this. For more
details about the file format, visit http://en.wikipedia.org/wiki/Wavefront_.obj_file.

The .obj format specifies vertices, normals and texture coordinates. For best results, the .obj should
only contain triangulated geometry. Materials are loaded from the .mtl files referenced in the .obj,
for more details on material parameters please consult the user's documentation.

The scene loading started by the user is initiated in Scenery3dMgr, which starts an asynchronous
loading process to avoid locking up the GUI while loading. When the SceneInfo is available, the
“real” loading begins in Scenery3d::loadScene, which loads the OBJ files for the scene and
the ground (for collision detection), calculating bounding boxes and transforms each vertex by the
value specified through rot_z in scenery3d.ini to account for a difference between
geographical north and grid north. When has been done, Scenery3d::finalizeLoading is
called in the main thread, uploading the data to OpenGL (using vertex buffers and vertex array
objects for the geometry).

The OBJ files are currently loaded in a 2-pass process, which could still be optimized. The loader
uses “oldschool” C-IO (fscanf, etc.) extensively, and partly in an unsafe way, and is therefore not
very robust against invalid OBJ files and may even present a security risk (buffer overflows) for
downloaded scenes. A rewrite using safer Qt IO classes is recommended.

OBJ objects are grouped by their material for better rendering performance and described by
StelModel objects, but this is currently only possible for objects which follow directly after each
other in the OBJ file (i.e. when there are 4 models defined in the OBJ directly after each other with
materials 1-1-2-1, 3 StelModels are created, instead of optimal 2 which would require some
reordering of the data). Less StelModels lead to a better rendering performance (reduced draw calls,
material/shader changes, etc). For best results, the OBJ files should be pre-optimized by grouping
all geometry with the same material together (as an OBJ object 'o' or a polygon group 'g').

For transparent objects, the opposite holds – each separate transparent object should be separated in
the OBJ file. This ensures correct Z-ordering, which uses the centroid position of each transparent
StelModel to determine the order in which to render them.

For rendering, one can simply call OBJ::bindGL, which binds the OpenGL buffers/VAO of the
model making it ready for drawing. In conjunction with the ShaderManager, a consistent
vertex/attribute layout is used that avoids having to specify the glVertexAttribPointer
differently for each shader.

http://en.wikipedia.org/wiki/Wavefront_.obj_file

Rendering methods
Older versions of Scenery3d used the StelPainter for rendering. This was not an optimal
solution, because it required the geometry to be re-uploaded for each draw call (which is bad
because our geometry does never change, and potentially consists of a massive amount of triangles,
compared to most other geometry used in Stellarium), supports only double-precision (which is
unnecessary for our 3D sceneries in almost all cases, because we do not need the accuracy that the
astronomical rendering, which potentially has to deal with very large size/distance differences,
uses), and supports only a very basic shading model. Because of these reasons, the current version
is completely independent of the StelPainter (unless for text/debug rendering), providing
instead a completely shader-based renderer system. It also no longer uses the fixed-function
OpenGL pipeline. Most functionality should be supported on OpenGL 2.1 – level hardware, basic
rendering with vertex-based lighting also on OpenGL 2.0. Geometry shader functionality requires
OpenGL 3.2. There are some adaptations for OpenGL ES 2.0 support, but this is currently untested.

Stellarium supports various projection methods for displaying the sky. As of version 0.13.3 this
includes Perspective, Equal Area, Stereographic, Fish-eye, Hammer-Aitoff, Cylinder, Mercator and
Orthographic projection. With the exception of Perspective, and Orthographic all of those are non-
linear and cannot properly be represented by an OpenGL projection matrix.

For this reason, there are 2 basic rendering paths. When Stellarium uses perspective projection, we
can use the tradional direct way of OpenGL rendering with a perspective projection matrix. This is
done in Scenery3d::drawDirect. This requires only 1 rendering pass (unless shadows are
used), and the rendering is performed onto the existing contents of the back buffer.

When Stellarium is set to any other projection, the scene rendering is performed in 2 phases, done
in Scenery3d::drawWithCubeMap. First, we render the scene to a cubemap (using
framebuffer objects, Scenery3d::generateCubeMap) using perspective 90° FOV projection
for each of the six cube faces. Then, we render this cubemap onto a tesselated/subdivided cube that
has been projected on the CPU-side using the current projection
(Scenery3d::drawFromCubeMap). Currently, a 20x20 subdivision is used for each face,
resulting in a total of 2646 vertices that have to be projected by the CPU each frame. This is still
reasonably fast, while making the subdivision almost unnoticable (the effect is a bit worse when
zoomed in and the camera moves). Of course, the whole rendering process is quite a bit slower than
the direct rendering setup, because the scene must be rendered 6 times + the cube
transformation/rendering also takes a bit of time.

For this reason, some optimizations have been implemented. Firstly, one can change the way the
cubemap is generated. The most basic method represents the cubemap by 6 textures
(GL_TEXTURE_2D objects), this seems to be the fastest way on some integrated Intel GPUs. The
second method uses a GL_TEXTURE_CUBEMAP object, which seems to be faster on reasonably
modern GPUs, and also avoids a possible seam at the edges when rendering the cube. The final
method uses OpenGL geometry shaders to render all 6 sides of the cube in a single pass. This may
seem like it is the best method, but it depends on the hardware and on the scene if this is true.
Especially larger scenes have a risk to be slower than the other methods, probably because of
increased GPU memory usage. The initialization in Scenery3d::initCubemapping creates
the correct OpenGL objects and calculates the cube vertices.

Another optimization avoids performing the slowest step of this rendering method, the creation of
the cubemap, in each frame. The user can set an interval (in Stellarium simulation time, not real
time), in which the cubemap is not updated. If the time is paused, and the user does not move in the
scene (he can still rotate the camera without causing a redraw), the cubemap is never updated again
because nothing in the scene changed. Only the cube rendering is performed, using the “static”
cubemap.

When the user moves (translation), the cubemap has to be recreated. There is also an optional
optimization that only causes 1 or 2 sides of the cubemap to be updated, depending on the viewing
direction. This also reduces the cost of rendering.

Collision Detection
The class Heightmap represents a data structure to accelerate height queries. Note that this is not
a “real” heightmap in the sense of a 2D height texture or similar. An instance of Heightmap is
initialized with a reference to an OBJ instance. This can be a separate ground model or the scene's
model, depending on the scenery3d.ini. Note that in Stellarium, the z-axis represents the
height, while the x-y-plane is parallel to the ground.

The triangles of all meshes are organized in a regular grid in the initialization process. Each grid
cell stores a list of all triangles that intersect with the grid cell. This is currently done using a simple
bounding-box (AABB) test. While this may introduce some false positives, it is generally faster and
simpler than similar approeaches.

The method Heightmap::getHeight then returns the z (height) value for a given point in the
x-y-plane. For this, only the triangles registered in the current grid cell are considered, which should
speed up the process considerably.

This class currently uses a fixed-size grid for all scenes. It works fine, but the performance for
initializing the grid and finding the height of a point is bad in larger scenes, and possibly even
slower as the whole other rendering process together. For testing of the rendering system
performance, the height test should be disabled completely by setting ground=NULL in the .ini. A
more performant collision detection should be possible by using AABB hierarchies or quadtrees. If
required, a general collision detection engine like the open-source Bullet (http://bulletphysics.org)
could also be considered.

For best results, the ground OBJ should be optimized, using the minimal amount of triangles to
achieve the desired results. A simple optimization is to leave out all vertical structures, because they
would have no impact anyway.

Shadow Mapping
The plugin uses an implementation of cascaded shadow mapping (MSDN, Nvidia), originally
integrated by Andrei Borza (Thesis).

The view frustum is adapted to the scene's bounding box, and split into 4 subfrusta
(adjustFrustum). A polyhedron that encompasses the frustum and the relevant shadow casters
is calculated for each split (computePolyhedron), an orthographic light projection that fits this
polyhedron is calculated (computeCropMatrix, fit-to-cascade as described in MSDN), and a
shadow/depth map is rendered (renderShadowMaps) for each split.

The adaptation of the shadow map extents is currently not ideal: the scene's bounding box is
combined with the frusta to determine the extents. It would be better to use a bounding box
hierarchy to provide a better fit, especially for large scenes (the “Copan” scene being a prime
example of badly fit shadow maps).

For rendering, shadow coordinates are calculated per-vertex, and the cascade to be used is
determined using the distance of the fragment in window space (interval-based selection in MSDN).
Shadow lookups use the hardware-accelerated sampler2DShadow. Shadow filtering is optional,
allowing to choose between a combination of OpenGL hardware shadow filtering (fast, but
performs filtering constant in UV space, which makes the penumbra size depend on shadow map
size and projection – which can vary with camera view), and custom PCF filtering with a 16 or 64-

http://www.cg.tuwien.ac.at/research/publications/2012/BORZA-2012-Stellarium/BORZA-2012-Stellarium-thesis.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416307(v=vs.85).aspx
http://bulletphysics.org/

tap poisson disk filter (filter size constant in view space, i.e. always the same penumbra size).

There is also an optional implementation of percentage-closer soft shadows (PCSS,
http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf), which varies the
penumbra size depending on the distance between shadow “blocker” and receiver, making shadows
sharp near contact points, and blurred further away.

For performance, the user can also disable CSM, so that only 1 shadow cascade is used. There is
also the problem of the cubemapping mode. Because the shadowmaps are fit to a perspective view
frustum, they have to be recreated for each cubemap side separately for correct shadows. A
simplification allows to assume perspective projection for fitting the shadow maps, when the FOV
is not too large this is alright, but if it is shadows will be missing. This only requires the usual 4
shadow passes (compared with a total of 6x5=30 passes in the full cubemap case with 4 cascades).

http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf

	Versions
	Introduction
	Working with Stellarium
	Class structure
	Filesystem structure
	Loading model files
	Rendering methods
	Collision Detection
	Shadow Mapping

