
Scenery3d - Walkable 3D Models in Stellarium

Georg Zotti∗ and Florian Schaukowitsch

April 10, 2015; last updated July 25, 2015

1 Introduction
Have you ever wished to be able to walk through Stonehenge or other ancient building struc-
tures described as being constructed with astronomical orientation in mind, and experience such
orientation in a 3D virtual environment that also provides a good sky simulation?

The Stellarium Scenery3d plugin allows you to see architectural 3D models embedded in a
landscape combined with the excellent representation of the sky provided by Stellarium. You can
walk around, check for (or demonstrate) possible astronomical alignments of ancient architecture,
see sundials and other shadow casters in action, etc.

2 Usage
You activate the plugin with the circular enclosure button at screen bottom or by pressing [Ctrl+3].
The other button with circular enclosure and tool icon (or [Ctrl+Shift+3]) opens the settings
dialog. Once loaded and displaying, you can walk around pressing [Ctrl] plus cursor keys. Change
eye height with [Ctrl]+[PgUp]/[PgDn] keys. Adding [Shift] key increases speed by 10, [Alt] by 5
(pressing both keys multiplies by 50!). If you release [Ctrl] before the cursor key, animation will
continue. (Press [Ctrl]+any cursor key to stop moving.)1

Further key bindings exist which can be configured using the Stellarium default key-binding
interface. Some options are also available in the Scenery3d dialog. For example, coordinate
display can be enabled. If your models are georeferenced in a true geographical coordinate grid,
e.g. UTM or Gauss-Krueger, you will especially like this, and this makes the plugin usable for
scientific purposes. Display shows grid name, Easting, Northing, Altitude of ground, and eye
height above ground.

Other features include a virtual “torchlight”, which can be enabled to give additional local
illumination around the viewer to help to see in the dark. Interesting points of view can be
saved and restored later by the user, including a description of the view. Scene authors can also
distribute predefined viewpoints in their scene.

The plugin also simulates the shadows of the scene’s objects cast by the Sun, Moon and even
Venus (only 1 shadow caster used at a time, you will never see shadows cast by Venus in moonlight),
so you could use it for examining sundials, or analyze and simulate light-and-shadow interactions
in archeological structures.

3 Hardware Requirements & Performance
In order to work with the non-linear projection models in Stellarium, this plugin uses a trick to
create the foreground renderings: it renders the scene into the six planes of a so-called cubemap,
which is then correctly reprojected onto the sides of a cube, depending on the current projection

∗Georg.Zotti@univie.ac.at, http://astrosim.univie.ac.at
1I (GZ) had to change keyboard handling in the main program, somewhat breaking the plugin concept.

1

Georg.Zotti@univie.ac.at
http://astrosim.univie.ac.at


settings. Your graphics card must be able to do this, i.e. it must support the OpenGL extension
called EXT_framebuffer_object. Typical modern 3D cards (by NVidia or ATI/AMD) support
this extension. In case your graphics hardware does not suppport it, the plugin will still work, but
you are limited to perspective projection.

You can influence rendering quality, but also speed, using the plugin’s GUI, which provides
some options such as enabling the use of shadows, bumpmapping (provides more realistic surface
lighting) or configuring the sizes of the textures used for the cubemap or shadowmaps. Larger
values there improve the quality, but require faster hardware and more video memory for smooth
results.

Because the “cubemap trick” requires quite a large amount of performance (in essence, the
scene has to be rendered 6 times), there are some options available that try to reduce this burden.
The first option is to change the type of the “cubemap”. The most compatible setting is 6 textures,
which seems to work best on older integrated Intel GPUs. The recommended default is the second
setting, Cubemap, which uses a more modern OpenGL feature and generally works a bit faster
than 6 textures on more modern graphics cards. Finally, the Geometry shader option tries to
render all 6 cube faces at once. This requires a more recent GPU + drivers (at least OpenGL
3.2 must be supported), the setting is disabled otherwise. Depending on your hardware and the
scene’s complexity, this method may give a speedup or may be slower, you must find this out
yourself.

Another option prevents re-rendering of the cubemap if nothing relevant has changed. You can
define the interval (in Stellarium’s simulation time) in which nothing is updated in the GUI. You
can still rotate the camera without causing a re-draw, giving a subjective performance that is close
to Stellarium’s performance without Scenery3d. When moving, the cubemap will be updated. You
can enable another option that only causes 1 or 2 sides of the cubemap to be updated while you
move, giving a speedup but causing some parts of the image to be outdated and discontinuous.
The cubemap will be completed again when you stop moving.

Shadow rendering may also cause quite a performance impact. The Simple shadows option
can speed this up a lot, at the cost of shadow quality especially in larger scenes. Another perfor-
mance/quality factor is shadow filtering. The sharpest (and fastest) possible shadows are achieved
with filtering Off, but depending on shadowmap resolution and scene size the shadows may look
quite “blocky”. Hardware shadow filtering is usually very fast, but may not improve appearance
a lot. Therefore, there are additional filter options available, the High filter option is relatively
expensive. Finally, the PCSS option allows to approximate the increase of solar and lunar shadow
penumbras relative to the distance from their shadow casters, i.e. shadows are sharp near contact
points, and more blurred further away. This again requires quite a bit of performance, and only
works if the shadow filter option is set to Low or High (without Hardware).

The configuration GUI shows tooltips for most of its settings, which can explain what a setting
does. All settings are saved automatically, and restored when you reopen Stellarium.

3.1 Performance notes
On reasonably good hardware (tested on a notebook PC with NVidia M580 GTS), models with
about 500.000 triangles are fluent with shadows and bumpmaps. On very small hardware like
single-board computers with native OpenGL ES2, models may be limited to 64k vertices (points).
If display is too slow, switch to perspective projection: all other projections require almost sixfold
effort! You should also prefer the “lazy” cubemap mode, where the scene is only rendered in
specific timesteps or when movement happens.

4 Model Configuration
The model format supported in Scenery3d is Wavefront .OBJ, which is pretty common for 3D
models. You can use several modeling programs to build your models. Software such as Blender,
Maya, 3D Studio Max etc. can export OBJ.

2



Geometry Yes
Lights Yes
Clay No

Photomatched Yes
DefaultUVs No
Instanced No

Table 1: Kerkythea Export Settings

A simple to use and cost-free modeling program is Google Sketchup, commonly used to create
the 3D buildings seen in Google Earth. It can be used to create georeferenced models. OBJ is
not a native export format for the standard version of Google Sketchup. If you are not willing to
afford Sketchup Pro, you have to find another way to export a textured OBJ model.

One good exporter is available in the Kerkythea renderer project2. You need SU2KT 3.17
or better, and KT2OBJ 1.1.0 or better. Deselect any selection, then export your model to the
Kerkythea XML format with settings shown in 1. (Or, with selection enabled, make sure settings
are No-Yes-Yes-No-Yes-No-No.) You do not have to launch Kerkythea unless you want to create
nice renderings of your model. Then, use the KT2OBJ converter to create an OBJ. You can delete
the XML after the conversion. Note that some texture coordinates may not be exported correctly.
The setting Photomatched:Yes seems now to have corrected this issue, esp. with distorted/manu-
ally shifted textures.

Another free OBJ exporter has been made available by TIG: OBJexporter.rb3. This is the
only OBJ exporter capable of handling large TIN landscapes (> 450.000 triangles). As of version
2.6 it seems to be the best OBJ exporter available for Sketchup.

This exporter swaps Y/Z coordinates, but you can add a key to the config file to correct
swapped axes, see below. Other exporters may also provide coordinates in any order of X, Y, Z –
all those can be properly configured.

Another (almost) working alternative: ObjExporter.rb by author Honing. Here, export with
settings 0xxx00. This will not create a TX... folder but dump all textures in the same directory
as the OBJ and MTL files. Unfortunately, currently some material assignments seem to be bad.

Yet another exporter, su2objmtl, does also not provide good texture coordinates and cannot
be recommended at this time.

4.1 Notes on OBJ file format limitations
The OBJ format supported is only a subset of the full OBJ format: Only (optionally textured)
triangle meshes are supported, i.e., only lines containing statements: mtllib, usemtl, v, vn, vt, f
(with three elements only!), g. Negative vertex numbers (i.e., a specification of relative positions)
are not supported.

A further recommendation for correct illumination is that all vertices should have vertex nor-
mals. Sketchup models exported with the Kerkythea or TIG plugins should have correct normals.
If your model does not provide them, default normals can be reconstructed from the triangle edges,
resulting in a faceted look.

If possible, the model should also be triangulated, but the current loader may also work with
non-triangle geometry. The correct use of objects (’o’) and groups (’g’) will improve performance:
it is best if you pre-combine all objects that use the same material into a single one. The loader
will try to optimize it anyways if this is not the case, but can do this only partly (to combine 2
objects with the same material into 1, it requires them to follow directly after each other in the
OBJ). A simple guide to use Blender for this task follows:

• Import from Wavefront (.obj) - you may need to change the forward/up axes for correct
orientation, try -Y for forward and Z for up

2 Available at http://www.kerkythea.net/cms/
3Available from http://forums.sketchucation.com/viewtopic.php?f=323&t=33448

3

http://www.kerkythea.net/cms/
http://forums.sketchucation.com/viewtopic.php?f=323&t=33448


• Select an object which has a shared material

• Press Shift+L and select ’By Material’

• Select ’Join’ in the left (main) tool window

• Repeat for other objects that have shared materials

• Export the .obj, making sure to select the same forward/up axes as in the import, also make
sure “Write Normals”, “Write Materials” and “Include UVs” are checked

For transparent objects (with a ’d’ or ’Tr’ value, alpha testing does NOT need this), this
recommendation does NOT hold: for optimal results, each separate transparent object should be
exported as a separate “OBJ object”. This is because they need to be sorted during rendering to
achieve correct transparency. If the objects are combined already, you can separate them using
Blender:

• Import .obj (see above)

• Select the combined transparent object

• Enter “Edit” mode with TAB and make sure everything is selected (press A if not)

• Press P and select “By loose parts”, this should separate the object into its unconnected
regions

• Export .obj (see above), also check “Objects as OBJ Objects”

The MTL file specified by “mtllib” contains the material parameters. The minimum that should
be specified is either map_Kd or a Kd line specifying color values used for the respective faces. But
there are other options in MTL files, and the supported parameters and defaults are listed in
Table 2.

If no ambient color is specified, the diffuse color values are taken for the ambient color. An
optional emissive term Ke can be added, which is modulated to only be visible during nighttime.
This also requires the landscape’s self-illumination layer to be enabled. It allows to model self-
illuminating objects such as street lights, windows etc. It can optionally also be modulated by the
emissive texture map_Ke.

If a value for Ks is specified, specularity is evaluated using the Phong reflection model with Ns
as the exponential shininess constant. Larger shininess means smaller specular highlights (more
metal-like appearance). Specularity is not modulated by the texture maps.

Parameter Default Range Meaning
Ka set to Kd values 0 . . . 1 each R/G/B Ambient color
Kd 0.8 0.8 0.8 0 . . . 1 each R/G/B Diffuse color
Ke 0.0 0.0 0.0 0 . . . 1 each R/G/B Emissive color
Ks 0.0 0.0 0.0 0 . . . 1 each R/G/B Specular color
Ns 8.0 0 . . .∞ shinyness
d or Tr 1.0 0 . . . 1 opacity
bAlphatest 0 0 or 1 perform alpha test
bBackface 0 0 or 1 render backface
map_Kd (none) filename texture map to be mixed with Ka, Kd
map_Ke (none) filename texture map to be mixed with Ke
map_bump (none) filename normal map for surface roughness

Table 2: MTL parameters evaluated

4

https://en.wikipedia.org/wiki/Phong_reflection_model


If a value for d or Tr exists, alpha blending is enabled for this material. This simulates
transparency effects. Transparency can be further controlled using the alpha channel of the map_Kd
texture.

A simpler and usually more performant way to achieve simple “cutout” transparency effects
is alpha-testing, by setting bAlphatest to 1. This simply discards all pixels of the model where
the alpha value of the map_Kd is below the transparency_threshold value from scenery3d.ini,
making “holes” in the model. This also produces better shadows for such objects. If required,
alpha testing can be combined with “real” blending-based transparency.

Sometimes, exported objects only have a single side (“paper wall”), and are only visible from
one side when looked at in Scenery3d. This is caused by an optimization called back-face culling,
which skips drawing the back sides of objects because they are usually not visible anyway. If
possible, avoid such “thin” geometry, this will also produce better shadows on the object. As a
workaround, you can also set bBackface to 1 to disable back-face culling for this material.

The optional map_bump enables the use of a tangent-space normal maps, which provides a
dramatic improvement in surface detail under illumination.

4.2 Configuring OBJ for Scenery3d
The walkaround in your scene can use a ground level (piece of terrain) on which the observer can
walk. The observer eye will always stay “eye height” above ground. Currently, there is no collision
detection with walls implemented, so you can easily walk through walls, or jump on high towers,
if their platform or roof is exported in the ground layer. If your model has no explicit ground
layer, walk will be on the highest surface of the scenery layer. If you use the special name NULL
as ground layer, walk will be above zero_ground_height level.

Technically, if your model has cavities or doors, you should export your model twice. Once,
just the ground plane, i.e. where you will walk. Of course, for a temple or other building, this
includes its socket above soil, and any steps, but pillars should not be included. This plane is
required to compute eye position above ground. Note that it is not possible to walk in several
floors of a building, or in a multi-plane staircase. You may have to export several “ground” planes
and configure several scenery directories for those rare cases. For optimal performance, the ground
model should consist of as few triangles as you can tolerate.

The second export includes all visible model parts, and will be used for rendering. Of course,
this requires the ground plane again, but also all building elements, walls, roofs, etc.

If you have not done so by yourself, it is recommended to separate ground and buildings into
Sketchup layers (or similar concepts in whichever editor you are using) in order to easily switch
the model to the right state prior to exporting.

Filename recommendations:

<Temple>.skp Name of a Sketchup Model file.
(The "<>" brackets signal "use your own name here!")
The SKP file is not used by Scenery3d, but you may want
to leave it in the folder for later improvements.

<Temple>.obj Model in OBJ format.
<Temple>_ground.obj Ground layer, if different from Model file.

OBJ export may also create folders TX_<Temple> and TX_<Temple>_ground. You can delete
the TX_<Temple>_ground folder, <Temple>_ground.obj is just used to compute vertical height.

Stellarium uses a directory to store additional data per-user. On Windows, this defaults
to C:\Documents and Settings\<username>\Application Data\Stellarium, but you can use
another directory by using the command-line argument –user-dir <USERDATA>. We will refer to
this directory. Put the OBJ, MTL and TX directories into a directory,
<USERDATA>/Stellarium/scenery3d/<Temple>, and add a text file called scenery3d.ini (This
name is mandatory!) with content described as follows.

5

https://en.wikipedia.org/wiki/Back-face_culling
https://en.wikipedia.org/wiki/Normal_mapping


[model]
name=<Temple> Unique ID within all models in scenery3d directory.

Recommendation: use directory name.
landscape=<landscapename> Name of an available Stellarium landscape.

This is required if the landscape file includes geographical coordinates and your model does not:
First, the location coordinates of the landscape.ini file are used, then location coordinates given
here. The landscape also provides the background image of your scenery. - If you want a zero-
height (mathematical) horizon, use the provided landscape called Zero Horizon.

scenery=<Temple>.obj The complete model, including visible ground.
ground=<Temple>_ground.obj Optional: separate ground plane. (NULL for zero altitude.)
description=<Description> A basic scene description (including HTML tags)

The scenery3d.ini may contain a simple scene description, but it is recommended to use the
localizable description format: in the scene’s directory (which contains scenery3d.ini) create
files in the format description.<lang_code>.utf8 which can contain arbitrary UTF-8-encoded
HTML content. <lang_code> stands for the ISO 639 language code.

author=<Your Name yourname@yourplace.com>
copyright=<Copyright Info>

obj_order=XYZ | Use this if you have used an exporter which swaps Y/Z coordinates.
| Defaults to XYZ, other options: XZY, YZX, YXZ, ZXY, ZYX

camNearZ=0.3 This defines the distance of the camera near plane, default 0.3.
Everything closer than this value to the camera can not be
displayed. Must be larger than zero. It may seem tempting
to set this very small, but this will lead to accuracy issues.
Recommendation is not to go under 0.1

camFarZ=10000 Defines the maximal viewing distance, default 10000.
shadowDistance=<val> The maximal distance shadows are displayed. If left out, the

value from camFarZ is used here. If this is set to a smaller
value, this may increase the quality of the shadows that are
still visible.

shadowSplitWeight=0..1 Decimal value for further shadow tweaking. If you require
better shadows up close, try setting this to higher values.
The default is calculated using a heuristic that incorporates
scene size.

[general]

The general section defines some further import/rendering options.

transparency_threshold=0.5 Defines the alpha threshold for alpha-testing,
as described in section 4.1. Default 0.5

scenery_generate_normals=0 Boolean, if true normals are recalculated by the
plugin, instead of imported. Default false

ground_generate_normals=0 Boolean, same as above, for ground model. Default
false.

[location]

Optional section to specify geographic longitude λ, latitude ϕ, and altitude. Required if
coord/convergence_angle=from_grid, else location is inherited from landscape.

planet = Earth
latitude = +48d31’30.4" ; Required if coord/convergence_angle=from_grid

6



longitude = +16d12’25.5" ; "--"
altitude =from_model|<int> ;

altitude (for astronomical computations) can be computed from the model: if from_model, it is
computed as (zmin + zmax)/2 + orig_H, i.e. from the model bounding box centre height.

display_fog = 0
atmospheric_extinction_coefficient = 0.2
atmospheric_temperature = 10.0
atmospheric_pressure = -1
light_pollution = 1

[coord]

Entries in the [coord] section are again optional, default to zero when not specified, but
are required if you want to display meaningful eye coordinates in your survey (world) coordinate
system, like UTM or Gauss-Krüger.

grid_name=<string>

Name of grid coordinates, e.g. “UTM 33 U (WGS 84)”, “Gauss-Krüger M34” or “Relative to
<Center>” This name is only displayed, there is no evaluation of its contents.

orig_E=<double> | (Easting) East-West-distance to zone central meridian
orig_N=<double> | (Northing) North distance from Equator
orig_H=<double> | (Height) Altitude above Mean Sea Level of model origin

These entries describe the offset, in metres, of the model coordinates relative to coordinates in a
geographic grid, like Gauss-Krüger. If you have your model vertices specified in grid coordinates,
do not specify orig_... data, but please definitely add start_... data, below.

Note that using grid coordinates without offset for the vertices is usually a bad idea for real-
world applications like surveyed sites in UTM coordinates. Coordinate values are often very
large numbers (ranging into millions of meters from equator and many thousands from the zone
meridian). If you want to assign millimetre values to model vertices, you will hit numerical
problems with the usual single-precision floating point arithmetic. Therefore we can specify this
offset which is only necessary for coordinate display.

convergence_angle=from_grid|<double>
grid_meridian=<double>|+<int>d<int>’<float>"

Typically, digital elevation models and building structures built on those are survey-grid aligned,
so true geographical north will not coincide with grid north, the difference is known as meridian
convergence.

γ(λ, ϕ) = arctan(tan(λ− λ0) sinϕ) (1)

This amount can be given in convergence_angle (degrees), so that your model will be rotated
clockwise by this amount around the vertical axis to be aligned with True North45.

grid_meridian Central meridian λ0 of grid zone, e.g. for UTM or Gauss-Krüger, is only
required to compute convergence angle if convergence_angle="from_grid"

zero_ground_height=<double>

height of terrain outside <Temple>_ground.OBJ, or if ground=NULL. Allows smooth approach from
outside. This value is relative to the model origin, or typically close to zero, i.e., use a Z value in
model coordinates, not world coordinates! (If you want the terrain height surrounding your model
to be orig_H, use 0, not the correct mean height above sea level!) Defaults to minimum of height
of ground level (or model, resp.) bounding box.

4http://en.wikipedia.org/wiki/Transverse_Mercator_projection
5Note that Sketchup’s georeferencing dictionary provides a NorthAngle entry, which is 360−convergence_angle.

7

http://en.wikipedia.org/wiki/Transverse_Mercator_projection


start_E=<double>
start_N=<double>
start_H=<double> /* only meaningful if ground==NULL, else H is derived from ground */
start_Eye=<double> /* default: 1.65m */
start_az_alt_fov=<az_deg>,<alt_deg>,<fov_deg> /* initial view direction and field of view.*/

start_... defines the view position to be set after loading the scenery. Defaults to center of
model boundingbox.

It is advisable to use the grid coordinates of the location of the panoramic photo ("landscape")
as start_... coordinates, or the correct coordinates and some carefully selected start_az_alt_fov
in case of certain view corridors (temple axes, . . . ).

4.3 Predefined views
You can also distribute some predefined views with your model in a viewpoints.ini file. See the
provided “Sterngarten” scene for an example. These entries are not editable by the user through the
interface. The user can always save his own views, they will be saved into the file userviews.ini
in the user’s Stellarium user directory, and are editable.

[StoredViews]
size=<int> Defines how many entries are in this file.

Prefix each entry with its index!
1/label=<string> The name of this entry
1/description=<string> A description of this entry (can include HTML)
1/position=<x,y,z,h> The x,y,z grid coordinates (like orig_* or start_*

in scenery3d.ini) + the current eye height
1/view_fov=<az_deg,alt_deg,fov_deg> The view direction + FOV

(like start_az_alt_fov in scenery3d.ini)
; an example for the second entry (note the 2 at the beginning of each line!)
2/label = Signs
2/description = Two signs that describe the Sterngarten
2/position = 593155.2421280354,5333348.6304404084,325.7295809038,0.8805893660
2/view_fov = 84.315399,-8.187078,83.000000

4.4 Concatenating OBJ files
Some automated workflows may involve tiled landscape areas, e.g. to overcome texture limitations
or triangle count limits in simpler tools like Sketchup. In this case you can create separate meshes
in the same coordinate system, but you need to concatenate them. in Blender, import the OBJ
files (File/Import/Wavefront .obj), select them and press Ctrl-J to join them, then export to a
single OBJ (File/Export/Wavefront .obj)6.

Verify the new model loads correctly, e.g. in Meshlab!

4.5 Working with non-georeferenced OBJ files
There exists modeling software which produces nice models, but without concept of georeference.
One spectacular example is AutoDesk PhotoFly, a cloud application which delivers 3D models
from a bunch of photos uploaded via its program interface. This “technological preview” is in
version 2 and free of cost as of mid-2011.

The problem with these models is that you cannot assign surveyed coordinates to points in
the model, so either you can georeference the models in other applications, or you must find the
correct transformation matrix. Importing the OBJ in Sketchup may take a long time for detailed
photo-generated models, and the texturing may suffer, so you can cut the model down to the

6http://blender.stackexchange.com/questions/3352/merging-multiple-obj-files

8



minimum necessary e.g. in Meshlab, and import just a stub required to georeference the model in
Sketchup.

Now, how would you find the proper orientation? The easiest chance would be with a structure
visible in the photo layer of Google Earth. So, start a new model and immediately "add location"
from the Google Earth interface. Then you can import the OBJ with TIG’s importer plugin. If
the imported model looks perfect, you may just place the model into the Sketchup landscape and
export a complete landscape just like above. If not, or if you had to cut/simplify the OBJ to be
able to import it, you can rotate/scale the OBJ (it must be grouped!). If you see a shadow in the
photos, you may want to set the date/time of the original photos in the scene and verify that the
shadows created by Sketchup illuminating the model match those in the model’s photo texture.
When you are satisfied with placement/orientation, you create a scenery3d.ini like above with
the command Plugins->ASTROSIM/Stellarium scenery3d helpers->Create scenery3d.ini.

Then, you select the OBJ group, open Windows->Ruby Console and call Plugins->ASTROSIM/Stellarium
scenery3d helpers->Export transformation of selected group (e.g., from PhotoFly import).

On the Ruby console, you will find a line of numbers (the 4× 4 transformation matrix) which
you copy/paste (all in one line!) into the [model] section in scenery3d.ini.

obj2grid_trafo=<a11>,<a12>,<a13>,<a14>,<a21>,<a22>,<a23>,<a24>,
<a31>,<a32>,<a33>,<a34>,<a41>,<a42>,<a43>,<a44>

You edit the scenery3d.ini to use your full (unmodified) PhotoFly model and, if you don’t have
a panorama, take Zero Horizon landscape as (no-)background. It depends on the model if you
want to be able to step on it, or to declare ground=NULL for a constant-height ground. Run
Stellarum once and adjust the start_N, start_E and zero_ground_height.

4.5.1 Rotating OBJs with recognized survey points

If you have survey points measured in a survey grid plus a photomodel with those points visible,
you can use Meshlab to find the model vertex coordinates in the photo model, and some other
program like CoordTrans in the JavaGraticule3D suite to find either the matrix values to enter
in scenery3d.ini or even rotate the OBJ points. However, this involves more math than can be
described here; if you came that far, you likely know the required steps. Here it really helps if you
know how to operate automatic text processors like AWK.

Authors and Acknowledgements
Scenery3d was conceived by Georg Zotti for the ASTROSIM project. A first prototype was imple-
mented originally in 2010/2011 by Simon Parzer and Peter Neubauer as student work supervised
by Michael Wimmer (TU Wien). Models for accuracy tests (Sterngarten, Testscene), and later
improvements in integration, user interaction, .ini option handling, OBJ/MTL loader bugfixes and
georeference testing by Georg Zotti.

Andrei Borza in 2011/12 further improved rendering quality (shadow mapping, normal map-
ping) and speed.

In 2014/15, Florian Schaukowitsch adapted the code to work with Qt 5 and the current Stel-
larium 0.13 codebase, replaced the renderer with a more efficient, fully shader-based system, im-
plemented various performance, quality and usability enhancements, and did some code cleanup.
Both Andrei and Florian were again supervised by Michael Wimmer.

This work has been originally created during the ASTROSIM project supported 2008-2012 by
the Austrian Science Fund (FWF) under grant number P 21208-G19.

9


	Introduction
	Usage
	Hardware Requirements & Performance
	Performance notes

	Model Configuration
	Notes on OBJ file format limitations
	Configuring OBJ for Scenery3d
	Predefined views
	Concatenating OBJ files
	Working with non-georeferenced OBJ files
	Rotating OBJs with recognized survey points



