GnuTLS

Transport Layer Security Library for the GNU system
for version 3.1.15, 2 April 2013

Nikos Mavrogiannopoulos
Simon Josefsson (bug-gnutls@gnu.org)

mailto:bug-gnutls@gnu.org

This manual is last updated 2 April 2013 for version 3.1.15 of GnuTLS.

Copyright (©) 2001-2013 Free Software Foundation, Inc.\\ Copyright © 2001-2013 Nikos
Mavrogiannopoulos

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Preface........... 1
2 Introduction to GnuTLS....................... 2
2.1 Downloading and installing..............., 2
2.2 OVEIVIEW ..ttt 3

3 Introduction to TLS and DTLS 4
3.1 TLS Iayers . o .ov e 4
3.2 The transport layer 4
3.3 The TLS record protocol...... ..., 5
3.3.1 Encryption algorithms used in the record layer............. 5)

3.3.2 Compression algorithms used in the record layer........... 7

3.3.3 Weaknesses and countermeasures 7

3.34 Onrecord padding ..o, 7

3.4 The TLS alert protocol.......... oo, 8
3.5 The TLS handshake protocol........... o .. 9
3.5.1 TLS ciphersuites 9

3.5.2 Authentication............. ... 10

3.5.3 Client authentication........... 10

3.5.4 Resuming Sessions..........ccouuiiiiiiiiiiiiiiieennnnnn. 10

3.6 TLS eXtensionsttt 10
3.6.1 Maximum fragment length negotiation.................... 10

3.6.2 Server name indicationoiiiiiiiaa.... 11

3.6.3 Session tickets........ ... 11

3.6.4 HeartBeat.........oooii 11

3.6.5 Safe renegotiation.......... o i 11

3.6.6 OCSP status requestoovireniiniiiii e 13

3.6.7 SR P .. 13

3.7 How to use TLS in application protocols....................... 15
3.7.1 Separate Portscouutitii 15

3.7.2 Upward negotiationooiiiiiiiiiiiiiiii... 15

3.8 On SSL 2 and older protocolsc.coviiiiiiiinninn... 16

4 Authentication methods...................... 18
4.1 Certificate authentication 18
4.1.1 X509 certificatescooveiiiiii 19
4.1.1.1 X.509 certificate structure............. 20

4.1.1.2 Importing an X.509 certificate 23

4.1.1.3 X.509 distinguished names........................... 23

4.1.1.4 Accessing public and private keys.................... 25

4.1.1.5 Verifying X.509 certificate paths...................... 25

4.1.1.6 Verifying a certificate in the context of TLS session .. 30

4.1.2 OpenPGP certificates ..., 31
4.1.2.1 OpenPGP certificate structure........................ 33
4.1.2.2 Verifying an OpenPGP certificate 34
4.1.2.3 Verifying a certificate in the context of a TLS session

... 34

4.1.3 Advanced certificate verification................., 35

4.1.3.1 Verifying a certificate using trust on first use
authentication........... ..o i i i 35
4.1.3.2 Verifying a certificate using DANE (DNSSEC)....... 35

4.1.4 Digital signatureso 36

4.1.4.1 Trading security for interoperability 37
4.2 More on certificate authentication............................. 37

4.2.1 PKCS #10 certificate requests, 37

4.2.2 PKIX certificate revocation lists.......................... 40

4.2.3 OCSP certificate status checking.......................... 43

4.2.4 Managing encrypted keys......... ... il 48

4.2.5 Invoking certtool........ i 53

4.2.6 Invoking ocsptool i 63

4.2.7 Invoking danetool......... ... 67

4.3 Shared-key and anonymous authentication..................... 71

4.3.1 SRP authentication 71
4.3.1.1 Authentication using SRP, 71
4.3.1.2 Invoking srptool......... ... i 72

4.3.2 PSK authenticationcooiiiiiiiiiiL, 74
4.3.2.1 Authentication using PSK, e
4.3.2.2 Invoking psktool......... o i 75

4.3.3 Anonymous authentication 76

4.4 Selecting an appropriate authentication method 7

4.4.1 Two peers with an out-of-band channel 7

4.4.2 Two peers without an out-of-band channel................ 77

4.4.3 Two peers and a trusted third party...................... 77

Hardware security modules and abstract key

CYPES - .o 79

5.1 Abstract key typesooiiii 79

5.1.1 Publickeys ..o 79

5.1.2 Private keys.o 81

5.1.3 Operations.o e 83

5.2 Smart cards and HSMs........o i 85

5.2.1 Initialization ... 86

5.2.2 Accessing objects that require a PIN 87

5.2.3 Reading objects...... ... 88

5.2.4 Writing objects. ... 91

5.2.5 Using a PKCS #11 token with TLS....................... 92

5.2.6 Invoking plltool........ ... 93

5.3 Trusted Platform Module (TPM).............oiiiiiiiiiiiat 96

5.3.1 Keysin TPM ... e 97

5.3.2 Key generation..........coooiiiiiiiiiiii i 97

ii

5.3.3 USINg KeYS 98
5.3.4 Invoking tpmtool...... 100

6 How to use GnuTLS in applications......... 103
6.1 Introductionc.cooiiiiiiiiiiiiiiiiiii s 103
6.1.1 General ideao 103
6.1.2 Error handling......... o i i 104
6.1.3 CommOn By PeS ... ouee et 104
6.1.4 Debugging and auditing............... ... L 105
6.1.5 Thread safetyo 105
6.1.6 Callback functions i i 106
6.2 Preparation.............oouiiiiiiiiii 106
6.2.1 Headers........c.coviiiiiiiiii e 106
6.2.2 Initialization........ 107
6.2.3 Versioncheckooiiii i 107
6.2.4 Building the sourceo i 107
6.3 Session initialization 108
6.4 Associating the credentials............... L. 109
6.4.1 Certificates ... 109
6.4.2 SRP .. 114
6.4.3 PSK ... 116
6.4.4 ANONYINOUS . ..t vttt et e 117
6.5 Setting up the transport layer..............., 117
6.5.1 Asynchronous operation...............cooiiiiiiiii., 120
6.5.2 DTLS SESSIONS . ..ttt 121
6.6 TLS handshake......... i i i 122
6.7 Data transfer and termination................ 123
6.8 Buffered data transfer.......... L. 126
6.9 Handling alerts i i 126
6.10 Priority strings ... 128
6.11 Selecting cryptographic key sizes.............. 134
6.12 Advanced tOPICS ...ttt e 136
6.12.1 Session resumption.eeeeiiiieniiinenane... 136
6.12.2 Certificate verification............. L 138
6.12.2.1 Truston first use..........coooiiiiiiiiiiii. 138
6.12.2.2 DANE verification, 140
6.12.3 Parameter generation 141
6.12.4 Keying material exporters.............. 142
6.12.5 Channel bindingscc i 143
6.12.6 Interoperabilityo i 143

6.12.7 Compatibility with the OpenSSL library................ 144

iii

7 GnuTLS application examples 145
7.1 Client examples.oou i e 145
7.1.1 Simple client example with X.509 certificate support 145
7.1.2 Simple client example with SSH-style certificate verification
... 149
7.1.3 Simple client example with anonymous authentication ... 152
7.1.4 Simple datagram TLS client example 154
7.1.5 Obtaining session information........................... 157
7.1.6 Using a callback to select the certificate to use........... 160
7.1.7 Verifying a certificate i 166
7.1.8 Using a smart card with TLS............................ 169
7.1.9 Client with resume capability example................... 173
7.1.10 Simple client example with SRP authentication......... 176
7.1.11 Simple client example using the C++ APL.............. 179
7.1.12 Helper functions for TCP connections 181
7.1.13 Helper functions for UDP connections.................. 183
7.2 Server eXamples. 184
7.2.1 Echo server with X.509 authentication................... 184
7.2.2 Echo server with OpenPGP authentication............... 188
7.2.3 Echo server with SRP authentication 192
7.2.4 Echo server with anonymous authentication 196
7.2.5 DTLS echo server with X.509 authentication............. 199
7.3 OCSP example 209
7.4 Miscellaneous examples ... 216
7.4.1 Checking for an alert............. ... i, 216
7.4.2 X.509 certificate parsing example 217
7.4.3 Listing the ciphersuites in a priority string............... 219
7.4.4 PKCS #12 structure generation example 221
7.5 XSSL examples ...ttt e 224
7.5.1 Example client with X.509 certificate authentication..... 224
7.5.2 Example client with X.509 certificate authentication and
TOFU o 226

Using GnuTLS as a cryptographic library

... 229

8.1 Symmetric algorithms.......... 229
8.2 Public key algorithms............c. .o i 229
8.3 Hash and HMAC functions............ ... 229
8.4 Random number generation............... ... il 230
Other included programs.................... 231
9.1 Invoking gnutls-cli 231
9.2 Invoking gnutls-serv........ ... 235

9.3 Invoking gnutls-cli-debug........... il 240

iv

10 Internal Architecture of GnuTLS.......... 243

10.1 The TLS Protocolo 243
10.2 TLS Handshake Protocol 243
10.3 TLS Authentication Methods 244
10.4 TLS Extension Handling............... ..o o it 245
10.5 Cryptographic Backend oL 251

Appendix A Upgrading from previous versions

... 254
Appendix B Support.......................... 256
B.1 Getting Help . ..o 256
B.2 Commercial SUpportcooiiiiiiiii i 256
B.3 Bug Reports ... 256
B.4 Contributingo 257

Appendix C Error Codes and Descriptions.. 258

Appendix D Supported Ciphersuites......... 265
Appendix E API reference.................... 270
E.1 Core TLS APIL. 270
E.2 Highlevel TLS APL 349
E.3 Datagram TLS API 349
E.4 X.509 certificate API. 352
E.5 OCSP API. ... 430
E.6 OpenPGP APIL...... .. i 440
E.7 PKCS 12 AP ... 460
E.8 Hardware token via PKCS 11 APL........................... 466
E.9 TPM APL. .. 478
E.10 Abstract key APL 480
E.11 DANE API. ... 504
E.12 Cryptographic APT 509
E.13 Compatibility APTt 515
Appendix F Copying Information............ 525
Bibliography............. 533
Function and Data Index........................ 537

Concept Index................ 546

Chapter 1: Preface 1

1 Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require
the programmer to make careful and correct usage of them. Otherwise it is likely to only
obtain a false sense of security. The term of security is very broad even if restricted to
computer software, and cannot be confined to a single cryptographic library. For that
reason, do not consider any program secure just because it uses GnuTLS; there are several
ways to compromise a program or a communication line and GnuTLS only helps with some
of them.

Although this document tries to be self contained, basic network programming and public
key infrastructure (PKI) knowledge is assumed in most of it. A good introduction to
networking can be found in [STEVENS], to public key infrastructure in [GUTPKI] and to
security engineering in [ANDERSON].

Updated versions of the GnuTLS software and this document will be available from http://
www.gnutls.org/ and http://www.gnu.org/software/gnutls/.

http://www.gnutls.org/
http://www.gnutls.org/
http://www.gnu.org/software/gnutls/

Chapter 2: Introduction to GnuTLS 2

2 Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols
ranging from SSL 3.0 to TLS 1.2 (see Chapter 3 [Introduction to TLS], page 4, for a detailed
description of the protocols), accompanied with the required framework for authentication
and public key infrastructure. Important features of the GnuTLS library include:

e Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

e Support for Datagram TLS 1.0.

e Support for handling and verification of X.509 and OpenPGP certificates.
e Support for password authentication using TLS-SRP.

e Support for keyed authentication using TLS-PSK.

e Support for TPM, PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it
uses functionality from the libtasnl library. The “Cryptographic back-end” is provided by
the nettle and gmplib libraries.

2.1 Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable
release and a odd minor version number indicate a development release. For example,
GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a devel-
opment release since 7 is odd.

GnuTLS depends on nettle and gmplib, and you will need to install it before installing
GnuTLS. The nettle library is available from http://www.lysator.liu.se/ nisse/
nettle/, while gmplib is available from http://www.gmplib.org/. Don’t forget to verify
the cryptographic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the INSTALL file
that is part of the distribution archive. Typically you invoke ./configure and then make
check install. There are a number of compile-time parameters, as discussed below.

Several parts of GnuTLS require ASN.1 functionality, which is provided by a library called
libtasnl. A copy of libtasnl is included in GnuTLS. If you want to install it separately
(e.g., to make it possibly to use libtasnl in other programs), you can get it from http://
www.gnu.org/software/libtasnl/.

The compression library, 1ibz, the PKCS #11 helper library p11-kit, as well as the TPM
library trousers, are optional dependencies. You may get libz from http://www.zlib.

http://www.gnutls.org/download.html
http://www.lysator.liu.se/~nisse/nettle/
http://www.lysator.liu.se/~nisse/nettle/
http://www.gmplib.org/
http://www.gnu.org/software/libtasn1/
http://www.gnu.org/software/libtasn1/
http://www.zlib.net/

Chapter 2: Introduction to GnuTLS 3

net/, pll-kit from http://pll-glue.freedesktop.org/ and trousers from http://
trousers.sourceforge.net/.

A few configure options may be relevant, summarized below. They disable or enable
particular features, to create a smaller library with only the required features. Note however,
that although a smaller library is generated, the included programs are not guarranteed to
compile if some of these options are given.

--disable-srp-authentication
--disable-psk-authentication
--disable-anon-authentication
--disable-dhe

--disable-ecdhe
--disable-rsa-export
--disable-extra-pki
--disable-openpgp-authentication
--disable-openssl-compatibility
--disable-libdane
--without-plil-kit

--with-tpm
--disable-dtls-srtp-support

For the complete list, refer to the output from configure --help.

2.2 Overview

In this document we present an overview of the supported security protocols in Chapter 3
[Introduction to TLS], page 4, and continue by providing more information on the certifi-
cate authentication in Section 4.1 [Certificate authentication], page 18, and shared-key as
well anonymous authentication in Section 4.3 [Shared-key and anonymous authentication],
page 71. We elaborate on certificate authentication by demonstrating advanced usage of
the API in Section 4.2 [More on certificate authentication|, page 37. The core of the TLS
library is presented in Chapter 6 [How to use GnuTLS in applications|, page 103 and ex-
ample applications are listed in Chapter 7 [GnuTLS application examples], page 145. In
Chapter 9 [Other included programs], page 231 the usage of few included programs that
may assist debugging is presented. The last chapter is Chapter 10 [Internal architecture of
GnuTLS], page 243 that provides a short introduction to GnuTLS’ internal architecture.

http://www.zlib.net/
http://www.zlib.net/
http://p11-glue.freedesktop.org/
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/

Chapter 3: Introduction to TLS and DTLS 4

3 Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] designed by Netscape. TLS is an Internet protocol, defined by IETF*,
described in [RFC5246]. The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, above, refers to TLS 1.0 but applies to
all other TLS versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [RFC/347] is a protocol with identical goals as
TLS, but can operate under unreliable transport layers such as UDP. The discussions below
apply to this protocol as well, except when noted otherwise.

3.1 TLS layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and
the alert protocol. The record protocol is to serve all other protocols and is above the
transport layer. The record protocol offers symmetric encryption, data authenticity, and
optionally compression. The alert protocol offers some signaling to the other protocols.
It can help informing the peer for the cause of failures and other error conditions. See
[The Alert Protocol], page 8, for more information. The alert protocol is above the record
protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol], page 9, for more informa-
tion about the handshake protocol. The protocol layering in TLS is shown in Figure 3.1.

— —

'FI)'LStHar:dshake TLS Alert Application
rotoco Protocol Protocol

—_ ———

TLS Record
Protocol

S ———

Transport Layer

— -

Figure 3.1: The TLS protocol layers.

3.2 The transport layer

TLS is not limited to any transport layer and can be used above any transport layer,
as long as it is a reliable one. DTLS can be used over reliable and unreliable transport

IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS and DTLS 5

layers. GnuTLS supports TCP and UDP layers transparently using the Berkeley sockets
API. However, any transport layer can be used by providing callbacks for GnuTLS to access
the transport layer (for details see Section 6.5 [Setting up the transport layer|, page 117).

3.3 The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The record layer functions can be called
at any time after the handshake process is finished, when there is need to receive or send
data. In DTLS however, due to re-transmission timers used in the handshake out-of-order
handshake data might be received for some time (maximum 60 seconds) after the handshake
process is finished.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the
record protocol’s parameters are all set by the handshake protocol. The record protocol
initially starts with NULL parameters, which means no encryption, and no MAC is used.
Encryption and authentication begin just after the handshake protocol has finished.

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption al-
gorithms like 3DES, AES or stream algorithms like ARCFOUR_128. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms in
CBC mode also provide protection against statistical analysis of the data. Thus, if you're
using the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 3.1 and Table 3.2.

Chapter 3: Introduction to TLS and DTLS

Algorithm
3DES_CBC

ARCFOUR_128

ARCFOUR_40

AES_CBC

AES_GCM

CAMELLIA _-
CBC

Description

This is the DES block cipher algorithm used with triple en-
cryption (EDE). Has 64 bits block size and is used in CBC
mode.

ARCFOUR_128 is a compatible algorithm with RSA’s RC4
algorithm, which is considered to be a trade secret. It is a
fast cipher but considered weak today.

This is the ARCFOUR cipher fed with a 40 bit key, which is
considered weak.

AES or RIJNDAEL is the block cipher algorithm that replaces
the old DES algorithm. Has 128 bits block size and is used in
CBC mode.

This is the AES algorithm in the authenticated encryption
GCM mode. This mode combines message authentication and
encryption and can be extremely fast on CPUs that support
hardware acceleration.

This is an 128-bit block cipher developed by Mitsubishi and
NTT. It is one of the approved ciphers of the European
NESSIE and Japanese CRYPTREC projects.

Table 3.1: Supported ciphers.

Algorithm
MAC_MD5

MAC_SHA1

MAC_SHA256

MAC_AEAD

Description
This is an HMAC based on MD5 a cryptographic hash algo-
rithm designed by Ron Rivest. Outputs 128 bits of data.

An HMAC based on the SHA1 cryptographic hash algorithm
designed by NSA. Outputs 160 bits of data.

An HMAC based on SHA256. Outputs 256 bits of data.

This indicates that an authenticated encryption algorithm,
such as GCM, is in use.

Table 3.2: Supported MAC algorithms.

Chapter 3: Introduction to TLS and DTLS 7

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS
can be found in the table below. The included algorithms perform really good when text,
or other compressible data are to be transferred, but offer nothing on already compressed
data, such as compressed images, zipped archives etc. These compression algorithms, may
be useful in high bandwidth TLS tunnels, and in cases where network usage has to be
minimized. It should be noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [RFC3749]. The sup-
ported algorithms are shown below.

GNUTLS_COMP_UNKNOWN
Unknown compression method.

GNUTLS_COMP_NULL
The NULL compression method (no compression).

GNUTLS_COMP_DEFLATE
The DEFLATE compression method from zlib.

GNUTLS_COMP_ZLIB
Same as GNUTLS_COMP_DEFLATE .

Figure 3.2: Supported compression algorithms

Note that compression enables attacks such as traffic analysis, or even plaintext recovery
under certain circumstances. To avoid some of these attacks GnuTLS allows each record
to be compressed independently (i.e., stateless compression), by using the "%STATE-
LESS_COMPRESSION" priority string, in order to be used in cases where the attacker
controlled data are pt in separate records.

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS
1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that

1. TLS has separate alerts for “decryption_failed” and “bad_record_mac”

2. The decryption failure reason can be detected by timing the response time.

3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.
Those weaknesses were solved in TLS 1.1 [RFC43/6] which is implemented in GnuTLS. For
this reason we suggest to always negotiate the highest supported TLS version with the

peer?. For a detailed discussion of the issues see the archives of the TLS Working Group
mailing list and [CBCATT].

3.3.4 On record padding

The TLS protocol allows for extra padding of records in CBC ciphers, to prevent statistical
analysis based on the length of exchanged messages (see [REFC5246] section 6.2.3.2).
GnuTLS appears to be one of few implementations that take advantage of this feature:

2 If this is not possible then please consult Section 6.12.6 [Interoperability], page 143.

Chapter 3: Introduction to TLS and DTLS 8

the user can provide some plaintext data with a range of lengths she wishes to hide, and
GnuTLS adds extra padding to make sure the attacker cannot tell the real plaintext
length is in a range smaller than the user-provided one. Use [gnutls_record_send_range],
page 325 to send length-hidden messages and [gnutls_record_can_use_length_hiding],
page 322 to check whether the current session supports length hiding. Using the standard
[gnutls_record_send], page 324 will only add minimal padding.

The TLS implementation in the Symbian operating system, frequently used by Nokia and
Sony-Ericsson mobile phones, cannot handle non-minimal record padding. What happens
when one of these clients handshake with a GnuTLS server is that the client will fail to
compute the correct MAC for the record. The client sends a TLS alert (bad_record_mac)
and disconnects. Typically this will result in error messages such as ’A TLS fatal alert has
been received’, 'Bad record MAC’, or both, on the GnuTLS server side.

If compatibility with such devices is a concern, not sending length-hidden messages solves
the problem by using minimal padding.

If you implement an application that have a configuration file, we recommend that you make
it possible for users or administrators to specify a GnuTLS protocol priority string, which
is used by your application via [gnutls_priority_set], page 317. To allow the best flexibility,
make it possible to have a different priority string for different incoming IP addresses.

3.4 The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (e.g. GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(e.g. GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future re-negotiations using the current session ID. All alert messages are summarized in
the table below.

The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

Alert ID Description
GNUTLS_A_CLOSE_NOTIFY 0 Close notify
GNUTLS_A_UNEXPECTED_MESSAGE 10 Unexpected message
GNUTLS_A_BAD_RECORD_MAC 20 Bad record MAC
GNUTLS_A_DECRYPTION_FAILED 21 Decryption failed
GNUTLS_A_RECORD_OVERFLOW 22 Record overflow
GNUTLS_A_DECOMPRESSION_FAILURE 30 Decompression failed
GNUTLS_A_HANDSHAKE_FAILURE 40 Handshake failed
GNUTLS_A_SSL3_NO_CERTIFICATE 41 No certificate (SSL 3.0)
GNUTLS_A_BAD_CERTIFICATE 42 Certificate is bad
GNUTLS_A_UNSUPPORTED_CERTIFICATE 43 Certificate is not
supported

GNUTLS_A_CERTIFICATE_REVOKED 44 Certificate was revoked

Chapter 3: Introduction to TLS and DTLS 9

GNUTLS_A_CERTIFICATE_EXPIRED 45 Certificate is expired
GNUTLS_A_CERTIFICATE_UNKNOWN 46 Unknown certificate
GNUTLS_A_ILLEGAL_PARAMETER 47 Illegal parameter
GNUTLS_A_UNKNOWN_CA 48 CA is unknown
GNUTLS_A_ACCESS_DENIED 49 Access was denied
GNUTLS_A_DECODE_ERROR 50 Decode error
GNUTLS_A_DECRYPT_ERROR 51 Decrypt error
GNUTLS_A_EXPORT_RESTRICTION 60 Export restriction
GNUTLS_A_PROTOCOL_VERSION 70 Error in protocol version
GNUTLS_A_INSUFFICIENT_SECURITY 71 Insufficient security
GNUTLS_A_INTERNAL_ERROR 80 Internal error
GNUTLS_A_USER_CANCELED 90 User canceled
GNUTLS_A_NO_RENEGOTIATION 100 No renegotiation is
allowed
GNUTLS_A_UNSUPPORTED_EXTENSION 110 An unsupported exten-

sion was sent

GNUTLS_A_CERTIFICATE_UNOBTAINABLE 111 Could not retrieve the
specified certificate

GNUTLS_A_UNRECOGNIZED_NAME 112 The server name sent
was not recognized
GNUTLS_A_UNKNOWN_PSK_IDENTITY 115 The SRP/PSK username

is missing or not known

3.5 The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. The main handshake func-
tion is [gnutls_handshake], page 302. In the next paragraphs we elaborate on the handshake
protocol, i.e., the ciphersuite negotiation.

3.5.1 TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS_DHE_RSA_WITH_3DES_CBC_SHA cipher suite name. A typical cipher suite contains these
parameters:

e The key exchange algorithm. DHE_RSA in the example.

e The Symmetric encryption algorithm and mode 3DES_CBC in this example.

e The MAC? algorithm used for authentication. MAC_SHA is used in the above example.
The cipher suite negotiated in the handshake protocol will affect the record protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS

to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

All the supported ciphersuites are listed in [ciphersuites], page 265.

3 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS and DTLS 10

3.5.2 Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

e Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

e SRP authentication: Authenticated key exchange using a password.
e PSK authentication: Authenticated key exchange using a pre-shared key.

e Anonymous authentication: Key exchange without peer authentication.

3.5.3 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client using the
[gnutls_certificate_server_set_request], page 277 function. We elaborate in Section 6.4.1
[Certificate credentials|, page 109.

3.5.4 Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature of
the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established
keys, meaning the server needs to store the state of established connections (unless session
tickets are used — Section 3.6.3 [Session tickets], page 11).

Session resumption is an integral part of GnuTLS, and Section 6.12.1 [Session resumption],
page 136, [ex:resume-client], page 173 illustrate typical uses of it.

3.6 TLS extensions
A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT]. The
extensions supported in GnuTLS are:
e Maximum fragment length negotiation
e Server name indication
Session tickets
e HeartBeat

e Safe Renegotiation

and they will be discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities.
The functions shown below can be used to control this extension.

size_t [gnutls_record_get_max_size], page 323 (gnutls_session_t session)
ssize_t [gnutls_record_set_max_size], page 326 (gnutls_session_t session,
size_t size)

Chapter 3: Introduction to TLS and DTLS 11

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls_server_name_set], page 328 and [gnutls_server_name_get|, page 328 can be
used to enable this extension, or to retrieve the name sent by a client.

int [gnutls_server_name_set], page 328 (gnutls_session_t session,
gnutls_server_name_type_t type, const void * name, size_t name_length)
int [gnutls_server_name_get], page 328 (gnutls_session_t session, void *
data, size_t * data_length, unsigned int * type, unsigned int indx)

3.6.3 Session tickets

To resume a TLS session the server normally store session parameters. This complicates
deployment, and could be avoiding by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to
the server and then sent to the client. The Session Tickets extension is described in RFC
5077 [TLSTKT].

Since version 3.1.3 GnuTLS clients transparently support session tickets.

3.6.4 HeartBeat

This TLS extension allows to ping and receive confirmation from the peer, is described
in [RFC6520]. The extension is disabled by default and [gnutls_heartbeat_enable],
page 304 can be used to enable it. A policy may be negotiated to only allow sending
heartbeat messages or sending and receiving. The current session policy can be checked
with [gnutls_heartbeat_allowed], page 304. The requests coming from the peer result
to GNUTLS_E_HERTBEAT_PING_RECEIVED being returned from the receive function. Ping
requests to peer can be send via [gnutls_heartbeat_ping|, page 305.

int [gnutls_heartbeat_allowed], page 304 (gnutls_session_t session, unsigned
int type)

void [gnutls_heartbeat_enable], page 304 (gnutls_session_t session, unsigned
int type)

int [gnutls_heartbeat_ping], page 305 (gnutls_session_t session, size_t
data_size, unsigned int max_tries, unsigned int flags)

int [gnutls_heartbeat_pong], page 305 (gnutls_session_t session, unsigned int
flags)

void [gnutls_heartbeat_set_timeouts], page 305 (gnutls_session_t session,
unsigned int retrans_timeout, unsigned int total_timeout)

unsigned int [gnutls_heartbeat_get_timeout], page 305 (gnutls_session_t
session)

3.6.5 Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their secu-
rity parameters. One useful example of this feature was for a client to initially connect

Chapter 3: Introduction to TLS and DTLS 12

using anonymous negotiation to a server, and the renegotiate using some authenticated
ciphersuite. This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is
renegotiating is the same as the one in the initial negotiation. For example one server could
forward all renegotiation traffic to an other server who will see this traffic as an initial
negotiation attempt.

This might be seen as a valid design decision, but it seems it was not widely known or un-
derstood, thus today some application protocols the TLS renegotiation feature in a manner
that enables a malicious server to insert content of his choice in the beginning of a TLS
session.

The most prominent vulnerability was with HTTPS. There servers request a renegotiation
to enforce an anonymous user to use a certificate in order to access certain parts of a web
site. The attack works by having the attacker simulate a client and connect to a server, with
server-only authentication, and send some data intended to cause harm. The server will
then require renegotiation from him in order to perform the request. When the proper client
attempts to contact the server, the attacker hijacks that connection and forwards traffic to
the initial server that requested renegotiation. The attacker will not be able to read the
data exchanged between the client and the server. However, the server will (incorrectly)
assume that the initial request sent by the attacker was sent by the now authenticated
client. The result is a prefix plain-text injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renego-
tiated handshakes with the initial negotiation. When the extension is used, the attack is
detected and the session can be terminated. The extension is specified in [RFC5746].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows.
Clients will attempt to negotiate the safe renegotiation extension when talking to servers.
Servers will accept the extension when presented by clients. Clients and servers will permit
an initial handshake to complete even when the other side does not support the safe renego-
tiation extension. Clients and servers will refuse renegotiation attempts when the extension
has not been negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension
is not enabled, is open up for attacks. Changing this default behavior would prevent in-
teroperability against the majority of deployed servers out there. We will reconsider this
default behavior in the future when more servers have been upgraded. Note that it is easy
to configure clients to always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see
Section 6.10 [Priority Strings|, page 128). The %UNSAFE_RENEGOTIATION priority string
permits (re-)handshakes even when the safe renegotiation extension was not negotiated.
The default behavior is %PARTIAL_RENEGOTIATION that will prevent renegotiation with
clients and servers not supporting the extension. This is secure for servers but leaves clients
vulnerable to some attacks, but this is a trade-off between security and compatibility with
old servers. The %SAFE_RENEGOTIATION priority string makes clients and servers require
the extension for every handshake. The latter is the most secure option for clients, at the

Chapter 3: Introduction to TLS and DTLS 13

cost of not being able to connect to legacy servers. Servers will also deny clients that do
not support the extension from connecting.

It is possible to disable use of the extension completely, in both clients and servers, by using
the %DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to
only do this for debugging and test purposes.

The default values if the flags above are not specified are:
Server: %PARTIAL_RENEGOTIATION
Client: %PARTIAL_RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The
[gnutls_safe_renegotiation_status|, page 327 function is used to check if the extension has
been negotiated on a session, and can be used both by clients and servers.

3.6.6 OCSP status request

The Online Certificate Status Protocol (OCSP) is a protocol that allows the client to verify
the server certificate for revocation without messing with certificate revocation lists. Its
drawback is that it requires the client to connect to the server’s CA OCSP server and
request the status of the certificate. This extension however, enables a TLS server to
include its CA OCSP server response in the handshake. That is an HTTPS server may
periodically run ocsptool (see Section 4.2.6 [ocsptool Invocation|, page 63) to obtain its
certificate revocation status and serve it to the clients. That way a client avoids an additional
connection to the OCSP server.

void [gnutls_certificate_set_ocsp_status_request_function], page 278
(gnutls_certificate_credentials_t sc, gnutls_status_request_ocsp_func
ocsp_func, void * ptr)

int [gnutls_certificate_set_ocsp_status_request_file], page 277
(gnutls_certificate_credentials_t sc, const char* response_file, unsigned int
flags)

int [gnutls_ocsp_status_request_enable_client], page 309 (gnutls_session_t
session, gnutls_datum_t * responder_id, size_t responder_id_size,
gnutls_datum_t * extensions)

int [gnutls_ocsp_status_request_is_checked], page 310 (gnutls_session_t
session, unsigned int flags)

A server is required to provide the OCSP server’s response using the
[gnutls_certificate_set _ocsp_status_request_file], page 277. The response may be
obtained periodically using the following command.

ocsptool --ask --load-cert server_cert.pem --load-issuer the_issuer.pem
--load-signer the_issuer.pem --outfile ocsp.response

Since version 3.1.3 GnuTLS clients transparently support the certificate status request.

3.6.7 SRTP

The TLS protocol was extended in [RFC576/4] to provide keying material to the Secure RTP
(SRTP) protocol. The SRTP protocol provides an encapsulation of encrypted data that is
optimized for voice data. With the SRTP TLS extension two peers can negotiate keys using

Chapter 3: Introduction to TLS and DTLS 14

TLS or DTLS and obtain keying material for use with SRTP. The available SRTP profiles
are listed below.

GNUTLS_SRTP_AES128_CM_HMAC_SHA1_80
128 bit AES with a 80 bit HMAC-SHA1

GNUTLS_SRTP_AES128_CM_HMAC_SHA1_32
128 bit AES with a 32 bit HMAC-SHA1

GNUTLS_SRTP_NULL_HMAC_SHA1_80
NULL cipher with a 80 bit HMAC-SHA1

GNUTLS_SRTP_NULL_HMAC_SHA1_32
NULL cipher with a 32 bit HMAC-SHA1

Figure 3.3: Supported SRTP profiles

To enable use the following functions.

int [gnutls_srtp_set_profile], page 342 (gnutls_session_t session,
gnutls_srtp_profile_t profile)

int [gnutls_srtp_set_profile_direct], page 342 (gnutls_session_t session,
const char * profiles, const char ** err_pos)

To obtain the negotiated keys use the function below.

int gnutls_srtp_get_keys (gnutls_session_t session, void * [Function]
key_material, unsigned int key_material_size, gnutls_datum_t *
client_key, gnutls_datum_t * client_salt, gnutls_datum_t *
server_key, gnutls_datum_t * server_salt)
session: is a gnutls_session_t structure.

key_material: Space to hold the generated key material
key_material_size: The maximum size of the key material

client_key: The master client write key, pointing inside the key material
client_salt: The master client write salt, pointing inside the key material
server_key: The master server write key, pointing inside the key material
server_salt: The master server write salt, pointing inside the key material

This is a helper function to generate the keying material for SRTP. It requires the
space of the key material to be pre-allocated (should be at least 2x the maximum key
size and salt size). The client_key , client_salt , server_key and server_salt
are convenience datums that point inside the key material. They may be NULL .

Returns: On success the size of the key material is returned, otherwise, GNUTLS_E_
SHORT_MEMORY_BUFFER if the buffer given is not sufficient, or a negative error code.

Since 3.1.4

Other helper functions are listed below.

Chapter 3: Introduction to TLS and DTLS 15

int [gnutls_srtp_get_selected_profile], page 341 (gnutls_session_t session,
gnutls_srtp_profile_t * profile)

const char * [gnutls_srtp_get_profile_name], page 341 (gnutls_srtp_profile_t
profile)

int [gnutls_srtp_get_profile_id], page 341 (const char * name,
gnutls_srtp_profile_t * profile)

3.7 How to use TLS in application protocols

This chapter is intended to provide some hints on how to use the TLS over simple custom
made application protocols. The discussion below mainly refers to the TCP/IP transport
layer but may be extended to other ones too.

3.7.1 Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for the
secure services. That way two separate ports were assigned, one for the non secure sessions,
and one for the secured ones. This has the benefit that if a user requests a secure session
then the client will try to connect to the secure port and fail otherwise. The only possible
attack with this method is a denial of service one. The most famous example of this method
is the famous “HTTP over TLS” or HTTPS protocol [RFC2818].

Despite its wide use, this method is not as good as it seems. This approach starts the
TLS Handshake procedure just after the client connects on the —so called— secure port.
That way the TLS protocol does not know anything about the client, and popular methods
like the host advertising in HTTP do not work®. There is no way for the client to say “I
connected to YYY server” before the Handshake starts, so the server cannot possibly know
which certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon obsoleted.

3.7.2 Upward negotiation

Other application protocols® use a different approach to enable the secure layer. They use
something often called as the “TLS upgrade” method. This method is quite tricky but it
is more flexible. The idea is to extend the application protocol to have a “STARTTLS”
request, whose purpose it to start the TLS protocols just after the client requests it. This
approach does not require any extra port to be reserved. There is even an extension to
HTTP protocol to support that method [RFC2817].

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See
a typical conversation of a hypothetical protocol:

(client connects to the server)
CLIENT: HELLO I'M MR. XXX

4 See also the Server Name Indication extension on [serverind], page 11.
5 See LDAP, IMAP etc.

Chapter 3: Introduction to TLS and DTLS 16

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

Rk TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA
And see an example of a conversation where someone is acting in between:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was dummy enough to send the confidential
data in the clear.

How to avoid the above attack? As you may have already noticed this one is easy to avoid.
The client has to ask the user before it connects whether the user requests TLS or not. If
the user answered that he certainly wants the secure layer the last conversation should be:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is
that the server may request additional data before the TLS Handshake protocol starts, in
order to send the correct certificate, use the correct password file, or anything else!

3.8 On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest
at that time, and was considered to be the most advanced in security properties. Later the
SSL 3.0 protocol was implemented since it is still the only protocol supported by several
servers and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

Chapter 3: Introduction to TLS and DTLS 17

e Message integrity compromised. The SSLv2 message authentication uses the MDb)
function, and is insecure.

e Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

e Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

o Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are
negotiated (say 40-bit keys) the message authentication code uses the same weak key,
which isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

Chapter 4: Authentication methods 18

4 Authentication methods

The initial key exchange of the TLS protocol performs authentication of the peers. In
typical scenarios the server is authenticated to the client, and optionally the client to the
server.

While many associate TLS with X.509 certificates and public key authentication, the pro-
tocol supports various authentication methods, including pre-shared keys, and passwords.
In this chapter a description of the existing authentication methods is provided, as well as
some guidance on which use-cases each method can be used at.

4.1 Certificate authentication

The most known authentication method of TLS are certificates. The PKIX [PKIX] public
key infrastructure is daily used by anyone using a browser today. GnuTLS supports both
X.509 certificates [PKIX] and OpenPGP certificates using a common API.

The key exchange algorithms supported by certificate authentication are shown in Table 4.1.

Chapter 4: Authentication methods 19

Key exchange Description

RSA The RSA algorithm is used to encrypt a key and send it to
the peer. The certificate must allow the key to be used for
encryption.

RSA_EXPORT The RSA algorithm is used to encrypt a key and send it to the
peer. In the EXPORT algorithm, the server signs temporary
RSA parameters of 512 bits — which are considered weak —
and sends them to the client.

DHE_RSA The RSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The key in the certifi-
cate must allow the key to be used for signing. Note that key
exchange algorithms which use ephemeral Diffie-Hellman pa-
rameters, offer perfect forward secrecy. That means that even
if the private key used for signing is compromised, it cannot
be used to reveal past session data.

ECDHE_RSA The RSA algorithm is used to sign ephemeral elliptic curve
Diffie-Hellman parameters which are sent to the peer. The key
in the certificate must allow the key to be used for signing. It
also offers perfect forward secrecy. That means that even if
the private key used for signing is compromised, it cannot be
used to reveal past session data.

DHE_DSS The DSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The certificate must
contain DSA parameters to use this key exchange algorithm.
DSA is the algorithm of the Digital Signature Standard
(DSS).

ECDHE_ECDSA The Elliptic curve DSA algorithm is used to sign ephemeral
elliptic curve Diffie-Hellman parameters which are sent to the
peer. The certificate must contain ECDSA parameters (i.e.,
EC and marked for signing) to use this key exchange algo-
rithm.

Table 4.1: Supported key exchange algorithms.

4.1.1 X.509 certificates

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities

Chapter 4: Authentication methods 20

exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

Root CA

i l Web Server
Bob

Alice

Figure 4.1: An example of the X.509 hierarchical trust model.

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. The framework is illustrated
on Figure 4.1.

4.1.1.1 X.509 certificate structure

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [PKIX] as shown in Table 4.2.

Chapter 4: Authentication methods 21

Field Description

version The field that indicates the version of the certificate.
serialNumber This field holds a unique serial number per certificate.
signature The issuing authority’s signature.

issuer Holds the issuer’s distinguished name.

validity The activation and expiration dates.

subject The subject’s distinguished name of the certificate.
extensions The extensions are fields only present in version 3 certificates.

Table 4.2: X.509 certificate fields.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished name
and in the ASN.1 notation is a sequence of several object identifiers with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
gnutls/x509.h.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.

The walidity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.

Certificate extensions are there to include information about the certificate’s subject that
did not fit in the typical certificate fields. Those may be e-mail addresses, flags that indicate
whether the belongs to a CA etc. All the supported X.509 version 3 extensions are shown
in Table 4.3.

Chapter 4: Authentication methods 22

Extension OID Description

Subject key id 2.5.29.14 An identifier of the key of the sub-
ject.

Authority key id 2.5.29.35 An identifier of the authority’s key

used to sign the certificate.

Subject alternative name 2.5.29.17 Alternative names to subject’s
distinguished name.

Key usage 2.5.29.15 Constraints the key’s usage of the
certificate.

Extended key usage 2.5.29.37 Constraints the purpose of the
certificate.

Basic constraints 2.5.29.19 Indicates whether this is a CA

certificate or not, and specify the
maximum path lengths of certifi-
cate chains.

CRL distribution points 2.5.29.31 This extension is set by the CA, in
order to inform about the issued
CRLs.

Certificate policy 2.5.29.32 This extension is set to indicate

the certificate policy as object
identifier and may contain a de-
scriptive string or URL.

Proxy Certification 1.3.6.1.5.5.7.1.14 Proxy Certificates includes this

Information extension that contains the OID
of the proxy policy language used,
and can specify limits on the max-
imum lengths of proxy chains.
Proxy Certificates are specified in
[RFC3820)].

Table 4.3: X.509 certificate extensions.

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the avail-
able functions for X.509 certificate handling have their prototypes in gnutls/x509.h. An

Chapter 4: Authentication methods 23

example program to demonstrate the X.509 parsing capabilities can be found in [ex:x509-
info], page 217.

4.1.1.2 Importing an X.509 certificate

The certificate structure should be initialized using [gnutls_x509_crt_init], page 401, and a
certificate structure can be imported using [gnutls_x509_crt_import], page 401.

int [gnutls_x509_crt_init], page 401 (gnutls_x509_crt_t * cert)

int [gnutls_x509_crt_import], page 401 (gnutls_x509_crt_t cert, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

void [gnutls_x509_crt_deinit], page 382 (gnutls_x509_crt_t cert)

In several functions an array of certificates is required. To assist in initialization and import
the following two functions are provided.

int [gnutls_x509_crt_list_import], page 401 (gnutls_x509_crt_t * certs,
unsigned int * cert_max, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t
format, unsigned int flags)

int [gnutls_x509_crt_list_import2], page 402 (gnutls_x509_crt_t ** certs,
unsigned int * size, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t
format, unsigned int flags)

In all cases after use a certificate must be deinitialized using [gnutls_x509_crt_deinit],
page 382. Note that although the functions above apply to gnutls_x509_crt_t structure,
similar functions exist for the CRL structure gnutls_x509_crl_t.

4.1.1.3 X.509 distinguished names

The “subject” of an X.509 certificate is not described by a single name, but rather with a
distinguished name. This in X.509 terminology is a list of strings each associated an ob-
ject identifier. To make things simple GnuTLS provides [gnutls_x509_crt_get_dn2], page 386
which follows the rules in [RFC/4514] and returns a single string. Access to each string by in-
dividual object identifiers can be accessed using [gnutls_x509_crt_get_dn_by_oid], page 387.

int gnutls_x509_crt_get_dn2 (gnutls_x509_crt_t cert, [Function]
gnutls_datum_t * dn)
cert: should contain a gnutls_x509_crt_t structure

dn: a pointer to a structure to hold the name

This function will allocate buffer and copy the name of the Certificate. The name will
be in the form "C=xxxx,0=yyyy,CN=zzzz" as described in RFC4514. The output
string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

Since: 3.1.10

Chapter 4: Authentication methods 24

int [gnutls_x509_crt_get_dn], page 386 (gnutls_x509_crt_t cert, char * buf,
size_t * buf_size)

int [gnutls_x509_crt_get_dn_by_oid], page 387 (gnutls_x509_crt_t cert, const
char * oid, int indx, unsigned int raw_flag, void * buf, size_t * buf_size)

int [gnutls_x509_crt_get_dn_oid], page 387 (gnutls_x509_crt_t cert, int indx,
void * oid, size_t * oid_size)

Similar functions exist to access the distinguished name of the issuer of the certificate.

int [gnutls_x509_crt_get_issuer_dn], page 392 (gnutls_x509_crt_t cert, char *
buf, size_t * buf_size)

int [gnutls_x509_crt_get_issuer_dn2], page 392 (gnutls_x509_crt_t cert,
gnutls_datum_t * dn)

int [gnutls_x509_crt_get_issuer_dn_by_oid], page 392 (gnutls_x509_crt_t
cert, const char * oid, int indx, unsigned int raw_flag, void * buf, size_t *
buf_size)

int [gnutls_x509_crt_get_issuer_dn_oid], page 393 (gnutls_x509_crt_t cert,
int indx, void * oid, size_t * oid_size)

int [gnutls_x509_crt_get_issuer], page 390 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

The more powerful [gnutls_x509_crt_get_subject], page 398 and [gnutls_x509_dn_get_rdn_aval,
page 414 provide efficient but low-level access to the contents of the distinguished name
structure.

int [gnutls_x509_crt_get_subject], page 398 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

int [gnutls_x509_crt_get_issuer], page 390 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

int gnutls_x509_dn_get_rdn_ava (gnutls_x509_dn_t dn, int irdn, int [Function]
iava, gnutls_x509_ava_st * ava)
dn: a pointer to DN

irdn: index of RDN

iava: index of AVA.

ava: Pointer to structure which will hold output information.

Get pointers to data within the DN. The format of the ava structure is shown below.

struct gnutls_x509_ava_st { gnutls_datum_t oid; gnutls_datum_t value; unsigned long
value_tag; };

The X.509 distinguished name is a sequence of sequences of strings and this is what
the irdn and iava indexes model.

Note that ava will contain pointers into the dn structure which in turns points to the
original certificate. Thus you should not modify any data or deallocate any of those.

This is a low-level function that requires the caller to do the value conversions when
necessary (e.g. from UCS-2).

Returns: Returns 0 on success, or an error code.

Chapter 4: Authentication methods 25

4.1.1.4 Accessing public and private keys

FEach X.509 certificate contains a public key that corresponds to a private key. To get a
unique identifier of the public key the [gnutls_x509_crt_get_key_id|, page 394 function is
provided. To export the public key or its parameters you may need to convert the X.509
structure to a gnutls_pubkey_t. See Section 5.1.1 [Abstract public keys], page 79 for more
information.

int gnutls_x509_crt_get_key_id (gnutls-x509_crt_t crt, unsigned [Function]
int flags, unsigned char * output_data, size_-t * output_data_size)
crt: Holds the certificate

flags: should be 0 for now
output_data: will contain the key ID

output_data_size: holds the size of output_data (and will be replaced by the actual
size of parameters)

This function will return a unique ID that depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then *output_data_size
is updated and GNUTLS_E_SHORT_MEMORY _BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

The private key parameters may be directly accessed by using one of the following functions.

int [gnutls_x509_privkey_get_pk_algorithm2], page 420 (gnutls_x509_privkey_t
key, unsigned int * bits)

int [gnutls_x509_privkey_export_rsa_raw2], page 419 (gnutls_x509_privkey_t
key, gnutls_datum_t * m, gnutls_datum_t * e, gnutls_datum_t * d, gnutls_datum_t
* p, gnutls_datum_t * g, gnutls_datum_t * u, gnutls_datum_t * el,
gnutls_datum_t * e2)

int [gnutls_x509_privkey_export_ecc_raw], page 417 (gnutls_x509_privkey_t
key, gnutls_ecc_curve_t * curve, gnutls_datum_t * x, gnutls_datum_t * y,
gnutls_datum_t* k)

int [gnutls_x509_privkey_export_dsa_raw], page 417 (gnutls_x509_privkey_t
key, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * g, gnutls_datum_t
* y, gnutls_datum_t * x)

int [gnutls_x509_privkey_get_key_id], page 420 (gnutls_x509_privkey_t key,
unsigned int flags, unsigned char * output_data, size_t * output_data_size)

4.1.1.5 Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the fol-
lowing functions are provided.

int gnutls_x509_trust_list_add_cas (gnutls-x509-trust_list_t [Function]
list, const gnutls_x509_crt_t * clist, int clist_size, unsigned int flags)
list: The structure of the list

clist: A list of CAs

Chapter 4: Authentication methods 26

clist_size: The length of the CA list
flags: should be 0.

This function will add the given certificate authorities to the trusted list. The list of
CAs must not be deinitialized during this structure’s lifetime.

Returns: The number of added elements is returned.
Since: 3.0

int gnutls_x509_trust_list_add_named_crt [Function]
(gnutls_x509_trust_list_t 1ist, gnutls_x509_crt_t cert, const void * name,
size_t name_size, unsigned int flags)
list: The structure of the list

cert: A certificate

name: An identifier for the certificate
name_size: The size of the identifier
flags: should be 0.

This function will add the given certificate to the trusted list and associate it with a
name. The certificate will not be be used for verification with gnutls_x509_trust_
list_verify_crt() but only with gnutls_x509_trust_list_verify_named_crt()

In principle this function can be used to set individual "server" certificates that are
trusted by the user for that specific server but for no other purposes.

The certificate must not be deinitialized during the lifetime of the trusted list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0
int gnutls_x509_trust_list_add_crls (gnutls_x509-trust_list_t [Function]

1list, const gnutls_x509_crl_t * crl_list, int crl_size, unsigned int flags,
unsigned int verification_flags)
list: The structure of the list

crl_list: A list of CRLs
crl_size: The length of the CRL list

flags: if GNUTLS_TL_VERIFY_CRL is given the CRLs will be verified before being
added.

verification_flags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function will add the given certificate revocation lists to the trusted list. The
list of CRLs must not be deinitialized during this structure’s lifetime.

This function must be called after gnutls_x509_trust_list_add_cas() to allow
verifying the CRLs for validity.

Returns: The number of added elements is returned.
Since: 3.0

Chapter 4: Authentication methods 27

int gnutls_x509_trust_list_verify_crt (gnutls_x509_trust_list_t [Function]
list, gnutls_x509_crt_t * cert_list, unsigned int cert_list_size,
unsigned int flags, unsigned int * verify, gnutls_verify_output_function
func)
list: The structure of the list

cert_list: is the certificate list to be verified
cert_list_size: is the certificate list size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

verify: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.

This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Limitation: Pathlen constraints or key usage flags are not consulted.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0
int gnutls_x509_trust_list_verify_named_crt [Function]

(gnutls_x509_trust_list_t 1ist, gnutls_x509_crt_t cert, const void * name,
size_t name_size, unsigned int flags, unsigned int * verify,
gnutls_verify_output_function func)

list: The structure of the list

cert: is the certificate to be verified

name: is the certificate’s name

name_size: is the certificate’s name size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

verify: will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

This function will try to find a certificate that is associated with the provided name —
see gnutls_x509_trust_list_add_named_crt() . If a match is found the certificate
is considered valid. In addition to that this function will also check CRLs. The
verify parameter will hold an OR’ed sequence of gnutls_certificate_status_t

flags.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.
Since: 3.0
int gnutls_x509_trust_list_add_trust_file [Function]

(gnutls_x509_trust_list_t 1ist, const char* ca_file, const char* crl_file,
gnutls_x509_crt_fmt_t type, unsigned int t1_flags, unsigned int t1_vflags)
list: The structure of the list

Chapter 4: Authentication methods 28

ca_file: A file containing a list of CAs (optional)

crl_file: A file containing a list of CRLs (optional)

type: The format of the certificates

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function will add the given certificate authorities to the trusted list. pkesll
URLs are also accepted, instead of files, by this function.

Returns: The number of added elements is returned.

Since: 3.1

int gnutls_x509_trust_list_add_trust_mem [Function]
(gnutls_x509_trust_list_t 1ist, const gnutls_.datum_t * cas, const
gnutls_datum_t * crls, gnutls_x509_crt_fmt_t type, unsigned int t1_flags,
unsigned int t1_vflags)
list: The structure of the list

cas: A buffer containing a list of CAs (optional)

crls: A buffer containing a list of CRLs (optional)

type: The format of the certificates

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list.

Returns: The number of added elements is returned.

Since: 3.1
int gnutls_x509_trust_list_add_system_trust [Function]
(gnutls_x509_trust_list_t 1ist, unsigned int t1_flags, unsigned int
tl_vflags)

list: The structure of the list
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function adds the system’s default trusted certificate authorities to
the trusted list. Note that on unsupported system this function returns
GNUTLS_E_UNIMPLEMENTED_FEATURE .

Returns: The number of added elements or a negative error code on error.
Since: 3.1

The verification function will verify a given certificate chain against a list of certificate au-
thorities and certificate revocation lists, and output a bit-wise OR of elements of the gnutls_
certificate_status_t enumeration shown in Figure 4.2. The GNUTLS_CERT_INVALID flag
is always set on a verification error and more detailed flags will also be set when appropriate.

Chapter 4: Authentication methods 29

GNUTLS_CERT_INVALID
The certificate is not signed by one of the known authorities or the signa-
ture is invalid (deprecated by the flags GNUTLS_CERT_SIGNATURE_FAILURE and
GNUTLS_CERT_SIGNER_NOT_FOUND)

GNUTLS_CERT_REVOKED
Certificate is revoked by its authority. In X.509 this will be set only if CRLSs
are checked.

GNUTLS_CERT_SIGNER_NOT_FOUND
The certificate’s issuer is not known. This is the case if the issuer is not included
in the trusted certificate list.

GNUTLS_CERT_SIGNER_NOT_CA
The certificate’s signer was not a CA. This may happen if this was a version 1
certificate, which is common with some CAs, or a version 3 certificate without
the basic constrains extension.

GNUTLS_CERT_INSECURE_ALGORITHM
The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

GNUTLS_CERT_NOT_ACTIVATED
The certificate is not yet activated.

GNUTLS_CERT_EXPIRED
The certificate has expired.

GNUTLS_CERT_SIGNATURE_FAILURE
The signature verification failed.

GNUTLS_CERT_REVOCATION_DATA_SUPERSEDED
The revocation data are old and have been superseded.

GNUTLS_CERT_UNEXPECTED_OWNER
The owner is not the expected one.

GNUTLS_CERT_REVOCATION_DATA_ISSUED_IN_FUTURE
The revocation data have a future issue date.

GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE
The certificate’s signer constraints were violated.

GNUTLS_CERT_MISMATCH
The certificate presented isn’t the expected one (TOFU)

Figure 4.2: The gnutls_certificate_status_t enumeration.

An example of certificate verification is shown in [ex:verify2], page 166. It is also possible to
have a set of certificates that are trusted for a particular server but not to authorize other
certificates. This purpose is served by the functions [gnutls_x509_trust_list_add_named _crt],
page 426 and [gnutls_x509_trust_list_verify_named_crt|, page 430.

Chapter 4: Authentication methods 30

4.1.1.6 Verifying a certificate in the context of TLS session

When operating in the context of a TLS session, the trusted certificate authority list may
also be set using:

int [gnutls_certificate_set_x509_trust_file], page 285
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_crl_file], page 280
(gnutls_certificate_credentials_t res, const char * crifile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_system_trust], page 284
(gnutls_certificate_credentials_t cred)

Then it is not required to setup a trusted list as above. The function
[gnutls_certificate_verify_peers3], page 288 may then be used to verify the peer’s
certificate chain and identity. The flags are set similarly to the verification functions in the
previous section.

There is also the possibility to pass some input to the verification functions in the form
of flags. For [gnutls_x509_trust_list_verify_crt], page 429 the flags are passed straightfor-
ward, but [gnutls_certificate_verify_peers3], page 288 depends on the flags set by calling
[gnutls_certificate_set_verify_flags|, page 279. All the available flags are part of the enumer-
ation gnutls_certificate_verify_flags shown in Figure 4.3.

Chapter 4: Authentication methods 31

GNUTLS_VERIFY_DISABLE_CA_SIGN
If set a signer does not have to be a certificate authority. This flag should
normaly be disabled, unless you know what this means.

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT
Allow trusted CA certificates with version 1. This is safer than GNUTLS_VERIFY_
ALLOW_ANY_X509_V1_CA_CRT , and should be used instead. That way only
signers in your trusted list will be allowed to have certificates of version 1. This
is the default.

GNUTLS_VERIFY_DO_NOT_ALLOW_SAME
If a certificate is not signed by anyone trusted but exists in the trusted CA list
do not treat it as trusted.

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT
Allow CA certificates that have version 1 (both root and intermediate). This
might be dangerous since those haven’t the basicConstraints extension. Must
be used in combination with GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT .

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
Allow certificates to be signed using the broken MD2 algorithm.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5
Allow certificates to be signed using the broken MD5 algorithm.

GNUTLS_VERIFY_DISABLE_TIME_CHECKS
Disable checking of activation and expiration validity periods of certificate
chains. Don’t set this unless you understand the security implications.

GNUTLS_VERIFY_DISABLE_TRUSTED_TIME_CHECKS
If set a signer in the trusted list is never checked for expiration or activation.

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT
Do not allow trusted CA certificates that have version 1. This option is to be
used to deprecate all certificates of version 1.

GNUTLS_VERIFY_DISABLE_CRL_CHECKS
Disable checking for validity using certificate revocation lists or the available
OCSP data.

GNUTLS_VERIFY_ALLOW_UNSORTED_CHAIN
A certificate chain is tolerated if unsorted (the case with many TLS servers out
there). This is the default since GnuTLS 3.1.4.

GNUTLS_VERIFY_DO_NOT_ALLOW_UNSORTED_CHAIN
Do not tolerate an unsorted certificate chain.

Figure 4.3: The gnutls_certificate_verify_flags enumeration.

4.1.2 OpenPGP certificates

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are

Chapter 4: Authentication methods 32

the same as a CA. OpenPGP allows anyone to sign anyone else’s public key. When Alice
signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer. For
example in Figure 4.4, David trusts Alice to be an introducer and Alice signed Bob’s key
thus Dave trusts Bob’s key to be the real one.

Alice

{Tru'st}
|

Charlie

Figure 4.4: An example of the OpenPGP trust model.

There are some key points that are important in that model. In the example Alice has to
sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key
- because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

Chapter 4: Authentication methods 33

Field Description

version The field that indicates the version of the OpenPGP structure.

user ID An RFC 2822 string that identifies the owner of the key. There
may be multiple user identifiers in a key.

public key The main public key of the certificate.

expiration The expiration time of the main public key.

public subkey An additional public key of the certificate. There may be

multiple subkeys in a certificate.

public subkey The expiration time of the subkey.
expiration

Table 4.4: OpenPGP certificate fields.

4.1.2.1 OpenPGP certificate structure

In GnuTLS the OpenPGP certificate structures [RFC2440] are handled using the gnutls_
openpgp_crt_t type. A typical certificate contains the user ID, which is an RFC 2822
mail and name address, a public key, possibly a number of additional public keys (called
subkeys), and a number of signatures. The various fields are shown in Table 4.4.

The additional subkeys may provide key for various different purposes, e.g. one key to
encrypt mail, and another to sign a TLS key exchange. Each subkey is identified by a
unique key ID. The keys that are to be used in a TLS key exchange that requires signatures
are called authentication keys in the OpenPGP jargon. The mapping of TLS key exchange
methods to public keys is shown in Table 4.5.

Key exchange Public key requirements

RSA An RSA public key that allows encryption.
DHE_RSA An RSA public key that is marked for authentication.
ECDHE_RSA An RSA public key that is marked for authentication.
DHE_DSS A DSA public key that is marked for authentication.

Table 4.5: The types of (sub)keys required for the various TLS key exchange methods.

The corresponding private keys are stored in the gnutls_openpgp_privkey_t type. All the
prototypes for the key handling functions can be found in gnutls/openpgp.h.

Chapter 4: Authentication methods 34

4.1.2.2 Verifying an OpenPGP certificate

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do
not use the features of the “web of trust”. For that reason, if the verification needs are
complex, the assistance of external tools like GnuPG and GPGME! is recommended.

In GnuTLS there is a verification function for OpenPGP certificates, the
[gnutls_openpgp_crt_verify_ring], page 451. This checks an OpenPGP key against
a given set of public keys (keyring) and returns the key status. The key verification status
is the same as in X.509 certificates, although the meaning and interpretation are different.
For example an OpenPGP key may be valid, if the self signature is ok, even if no signers
were found. The meaning of verification status flags is the same as in the X.509 certificates
(see Figure 4.3).

int gnutls_openpgp_crt_verify_ring (gnutls_openpgp-crt_t key, [Function]
gnutls_openpgp_keyring_t keyring, unsigned int flags, unsigned int *
verify)

key: the structure that holds the key.

keyring: holds the keyring to check against

flags: unused (should be 0)

verify: will hold the certificate verification output.

Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verify and will be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d.

Note that this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

int gnutls_openpgp_crt_verify_self (gnutls_openpgp-crt_t key, [Function]
unsigned int flags, unsigned int * verify)
key: the structure that holds the key.

flags: unused (should be 0)
verify: will hold the key verification output.

Verifies the self signature in the key. The key verification output will be put in verify
and will be one or more of the gnutls_certificate_status_t enumerated elements bitwise
or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

4.1.2.3 Verifying a certificate in the context of a TLS session

Similarly with X.509 certificates, one needs to specify the OpenPGP keyring
file in the credentials structure. The certificates in this file will be used by
[gnutls_certificate_verify_peers3], page 288 to verify the signatures in the certificate sent
by the peer.

! http://www.gnupg.org/related_software/gpgme/

http://www.gnupg.org/related_software/gpgme/

Chapter 4: Authentication methods 35

int gnutls_certificate_set_openpgp_keyring_file [Function]
(gnutls_certificate_credentials_t ¢, const char * file, gnutls_openpgp_crt_fmt_t
format)

c: A certificate credentials structure
file: filename of the keyring.
format: format of keyring.

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.1.3 Advanced certificate verification

The verification of X.509 certificates in the HTTPS and other Internet protocols is
typically done by loading a trusted list of commercial Certificate Authorities (see
[gnutls_certificate_set_x509_system_trust], page 284), and using them as trusted anchors.
However, there are several examples (eg. the Diginotar incident) where one of these
authorities was compromised. This risk can be mitigated by using in addition to CA
certificate verification, other verification methods. In this section we list the available in
GnuTLS methods.

4.1.3.1 Verifying a certificate using trust on first use
authentication

It is possible to use a trust on first use (TOFU) authentication method in GnuTLS. That
is the concept used by the SSH programs, where the public key of the peer is not verified,
or verified in an out-of-bound way, but subsequent connections to the same peer require
the public key to remain the same. Such a system in combination with the typical CA
verification of a certificate, and OCSP revocation checks, can help to provide multiple
factor verification, where a single point of failure is not enough to compromise the system.
For example a server compromise may be detected using OCSP, and a CA compromise can
be detected using the trust on first use method. Such a hybrid system with X.509 and trust
on first use authentication is shown in Section 7.1.2 [Simple client example with SSH-style
certificate verification|, page 149.

See Section 6.12.2 [Certificate verification], page 138 on how to use the available function-
ality.

4.1.3.2 Verifying a certificate using DANE (DNSSEC)

The DANE protocol is a protocol that can be used to verify TLS certificates using the
DNS (or better DNSSEC) protocols. The DNS security extensions (DNSSEC) provide an
alternative public key infrastructure to the commercial CAs that are typically used to sign
TLS certificates. The DANE protocol takes advantage of the DNSSEC infrastructure to
verify TLS certificates. This can be in addition to the verification by CA infrastructure
or may even replace it where DNSSEC is fully deployed. Note however, that DNSSEC
deployment is fairly new and it would be better to use it as an additional verification
method rather than the only one.

Chapter 4: Authentication methods 36

The DANE functionality is provided by the libgnutls-dane library that is shipped with
GnuTLS and the function prototypes are in gnutls/dane.h. See Section 6.12.2 [Certificate
verification], page 138 for information on how to use the library.

Note however, that the DANE RFC mandates the verification methods one should use in
addition to the validation via DNSSEC TLSA entries. GnuTLS doesn’t follow that RFC
requirement, and the term DANE verification in this manual refers to the TLSA entry
verification. In GnuTLS any other verification methods can be used (e.g., PKIX or TOFU)
on top of DANE.

4.1.4 Digital signatures

In this section we will provide some information about digital signatures, how they work,
and give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess
the input to the signature algorithm. This works as long as it is difficult enough to generate
two different messages with the same hash algorithm output. In that case the same signature
could be used as a proof for both messages. Nobody wants to sign an innocent message of
donating 1 euro to Greenpeace and find out that he donated 1.000.000 euros to Bad Inc.

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(zx), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair z,y with y = H(x) it is
impossible to calculate an =’ such that y = H(z').

3. Collision resistance. That means that it is impossible to calculate random = and z’
such H(z') = H(x).

The last two requirements in the list are the most important in digital signatures. These
protect against somebody who would like to generate two messages with the same hash out-
put. When an algorithm is considered broken usually it means that the Collision resistance
of the algorithm is less than brute force. Using the birthday paradox the brute force attack
takes 2(hash size)/2 gherations. Today colliding certificates using the MD5 hash algorithm
have been generated as shown in [WEGER].

There has been cryptographic results for the SHA-1 hash algorithms as well, although they
are not yet critical. Before 2004, MD5 had a presumed collision strength of 2%, but it
has been showed to have a collision strength well under 2°°. As of November 2005, it is
believed that SHA-1’s collision strength is around 2%3. We consider this sufficiently hard so
that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-
distributed certificates in the future. When 2% can be considered too weak compared to
the computer power available sometime in the future, SHA-1 will be disabled as well. The
collision attacks on SHA-1 may also get better, given the new interest in tools for creating
them.

Chapter 4: Authentication methods 37

4.1.4.1 Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and
get a GNUTLS_CERT_INSECURE_ALGORITHM validation error (see Section 4.1.1.5 [Verifying
X.509 certificate paths], page 25), it means that somewhere in the certificate chain there is
a certificate signed using RSA-MD2 or RSA-MD5. These two digital signature algorithms are
considered broken, so GnuTLS fails verifying the certificate. In some situations, it may be
useful to be able to verify the certificate chain anyway, assuming an attacker did not utilize
the fact that these signatures algorithms are broken. This section will give help on how to
achieve that.

It is important to know that you do not have to enable any of the flags discussed here
to be able to use trusted root CA certificates self-signed using RSA-MD2 or RSA-MD5. The
certificates in the trusted list are considered trusted irrespective of the signature.

If you are using [gnutls_certificate_verify_peers3], page 288 to verify the certificate chain,
you can call [gnutls_certificate_set_verify_flags], page 279 with the flags:

e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5

as in the following example:

gnutls_certificate_set_verify_flags (x509cred,
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);

This will signal the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using [gnutls_x509_crt_verify], page 412 or [gnutls_x509_crt_list_verify], page 402,
you can pass the GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags
parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall back
to using them after warning the user. If you wish to inspect the certificate chain yourself,
you can use [gnutls_certificate_get_peers|, page 276 to extract the raw server’s certificate
chain, [gnutls_x509_crt_list_import|, page 401 to parse each of the certificates, and then
[gnutls_x509_crt_get_signature_algorithm], page 398 to find out the signing algorithm used
for each certificate. If any of the intermediary certificates are using GNUTLS_SIGN_RSA_MD2
or GNUTLS_SIGN_RSA_MD5, you could present a warning.

4.2 More on certificate authentication

Certificates are not the only structures involved in a public key infrastructure. Several
other structures that are used for certificate requests, encrypted private keys, revocation
lists, GnuTLS abstract key structures, etc., are discussed in this chapter.

4.2.1 PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
[RFC2986]. Other formats of certificate requests are not currently supported.

Chapter 4: Authentication methods 38

A certificate request can be generated by associating it with a private key, setting the
subject’s information and finally self signing it. The last step ensures that the requester is
in possession of the private key.

int [gnutls_x509_crq_set_version], page 380 (gnutls_x509_crq_t crq, unsigned
int version)

int [gnutls_x509_crq_set_dn], page 377 (gnutls_x509_crq_t crq, const char *
dn, const char** err)

int [gnutls_x509_crq_set_dn_by_oid], page 378 (gnutls_x509_crq_t crg, const
char * oid, unsigned int raw_flag, const void * data, unsigned int sizeof_data)
int [gnutls_x509_crq_set_key_usagel, page 379 (gnutls_x509_crq_t crq,
unsigned int usage)

int [gnutls_x509_crq_set_key_purpose_oid], page 378 (gnutls_x509_crq_t crqg,
const void * oid, unsigned int critical)

int [gnutls_x509_crq_set_basic_constraints], page 377 (gnutls_x509_crq_t

crq, unsigned int ca, int pathLenConstraint)

The [gnutls_x509_crq_set_key], page 378 and [gnutls_x509_crq_sign2|, page 380 functions
associate the request with a private key and sign it. If a request is to be signed with a
key residing in a PKCS #11 token it is recommended to use the signing functions shown in
Section 5.1 [Abstract key types|, page 79.

int gnutls_x509_crq_set_key (gnutls_x509_crq-t crq, [Function]
gnutls_x509_privkey_t key)
crq: should contain a gnutls_x509_crq_t structure
key: holds a private key
This function will set the public parameters from the given private key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

int gnutls_x509_crq_sign2 (gnutls_x509_crq-t crq, [Function]
gnutls_x509_privkey_t key, gnutls_digest_algorithm_t dig, unsigned int flags)
crq: should contain a gnutls_x509_crq_t structure

key: holds a private key
dig: The message digest to use, i.e., GNUTLS_DIG_SHA1
flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

The following example is about generating a certificate request, and a private key. A
certificate request can be later be processed by a CA which should return a signed certificate.

Chapter 4: Authentication methods 39

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <gnutls/abstract.h>
#include <time.h>

/* This example will generate a private key and a certificate
* request.

*/

int

main (void)

{
gnutls_x509_crq_t crq;
gnutls_xb09_privkey_t key;
unsigned char buffer[10 * 1024];
size_t buffer_size = sizeof (buffer);
unsigned int bits;

gnutls_global_init ();

/* Initialize an empty certificate request, and
* an empty private key.
*/

gnutls_x509_crq_init (&crq);

gnutls_x509_privkey_init (&key);

/* Generate an RSA key of moderate security.

*/
bits = gnutls_sec_param_to_pk_bits (GNUTLS_PK_RSA, GNUTLS_SEC_PARAM_NORMAL) ;
gnutls_x509_privkey_generate (key, GNUTLS_PK_RSA, bits, 0);

/* Add stuff to the distinguished name
*/
gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COUNTRY_NAME,
0, "GR", 2);

gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COMMON_NAME,

Chapter 4: Authentication methods 40

0, "Nikos", strlen ("Nikos"));

/* Set the request version.
*/

gnutls_x509_crq_set_version (crq, 1);

/* Set a challenge password.
*/

gnutls_x509_crq_set_challenge_password (crq, "something to remember here");

/* Associate the request with the private key
*/
gnutls_x509_crq_set_key (crq, key);

/* Self sign the certificate request.
*/
gnutls_x509_crq_sign2 (crq, key, GNUTLS_DIG_SHA1, 0);

/* Export the PEM encoded certificate request, and
* display it.
*/
gnutls_x509_crq_export (crq, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("Certificate Request: \nJ)s", buffer);

/* Export the PEM encoded private key, and
* display it.
*/
buffer_size = sizeof (buffer);
gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("\n\nPrivate key: \nJs", buffer);

gnutls_x509_crq_deinit (crq);
gnutls_x509_privkey_deinit (key);

return O;

4.2.2 PKIX certificate revocation lists

A certificate revocation list (CRL) is a structure issued by an authority periodically con-
taining a list of revoked certificates serial numbers. The CRL structure is signed with the
issuing authorities’ keys. A typical CRL contains the fields as shown in Table 4.6. Certifi-

Chapter 4: Authentication methods 41

cate revocation lists are used to complement the expiration date of a certificate, in order to
account for other reasons of revocation, such as compromised keys, etc.

Fach CRL is valid for limited amount of time and is required to provide, except for the
current issuing time, also the issuing time of the next update.

Field Description

version The field that indicates the version of the CRL structure.

signature A signature by the issuing authority.

issuer Holds the issuer’s distinguished name.

thisUpdate The issuing time of the revocation list.

nextUpdate The issuing time of the revocation list that will update that
one.

revokedCertificates List of revoked certificates serial numbers.

extensions Optional CRL structure extensions.

Table 4.6: Certificate revocation list fields.
The basic CRL structure functions follow.

int [gnutls_x509_crl_init], page 363 (gnutls_x509_crl_t * crl)

int [gnutls_x509_crl_import], page 363 (gnutls_x509_crl_t crl, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_x509_crl_export], page 356 (gnutls_x509_crl_t crl,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)
int [gnutls_x509_crl_export], page 356 (gnutls_x509_crl_t crl,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

Reading a CRL

The most important function that extracts the certificate revocation information from a
CRL is [gnutls_x509_crl_get_crt_serial], page 358. Other functions that return other fields
of the CRL structure are also provided.

int gnutls_x509_crl_get_crt_serial (gnutls_x509_crl_t crl, int [Function]
indx, unsigned char * serial, size_t * serial_size, time_t * t)
crl: should contain a gnutls_x509_crl_t structure

indx: the index of the certificate to extract (starting from 0)
serial: where the serial number will be copied
serial_size: initially holds the size of serial

t: if non null, will hold the time this certificate was revoked

Chapter 4: Authentication methods 42

This function will retrieve the serial number of the specified, by the index, revoked
certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

int [gnutls_x509_crl_get_version], page 362 (gnutls_x509_crl_t crl)

int [gnutls_x509_crl_get_issuer_dn], page 360 (const gnutls_x509_crl_t crl,
char * buf, size_t * sizeof_buf)

int [gnutls_x509_crl_get_issuer_dn2], page 360 (gnutls_x509_crl_t crl,
gnutls_datum_t * dn)

time_t [gnutls_x509_crl_get_this_updatel], page 362 (gnutls_x509_crl_t crl)
time_t [gnutls_x509_crl_get_next_update], page 361 (gnutls_x509_crl_t crl)
int [gnutls_x509_crl_get_crt_count], page 358 (gnutls_x509_crl_t crl)

Generation of a CRL

The following functions can be used to generate a CRL.

int [gnutls_x509_crl_set_version], page 366 (gnutls_x509_crl_t crl, unsigned
int version)

int [gnutls_x509_crl_set_crt_seriall, page 365 (gnutls_x509_crl_t crl, const
void * serial, size_t serial_size, time_t revocation_time)

int [gnutls_x509_crl_set_crt], page 365 (gnutls_x509_crl_t crl,
gnutls_x509_crt_t crt, time_t revocation_time)

int [gnutls_x509_crl_set_next_update], page 365 (gnutls_x509_crl_t crl,
time_t exp_time)

int [gnutls_x509_crl_set_this_update], page 366 (gnutls_x509_crl_t crl,
time_t act_time)

The [gnutls_x509_crl_sign2|, page 366 and [gnutls_x509_crl_privkey_sign|, page 503 func-
tions sign the revocation list with a private key. The latter function can be used to sign
with a key residing in a PKCS #11 token.

int gnutls_x509_crl_sign2 (gnutls_x509_crl_t crl, gnutls_x509_crt_t [Function]
issuer, gnutls_x509_privkey_t issuer_key, gnutls_digest_algorithm_t dig,
unsigned int flags)
crl: should contain a gnutls_x509_crl_t structure

issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer’s private key

dig: The message digest to use. GNUTLS_DIG_SHAT is the safe choice unless you
know what you're doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Chapter 4: Authentication methods 43

int gnutls_x509_crl_privkey_sign (gnutls_x509_crl_-t crl, [Function]
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)
crl: should contain a gnutls_x509_crl_t structure

issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer’s private key

dig: The message digest to use. GNUTLS_DIG_SHAL is the safe choice unless you
know what you're doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 2.12.0

Few extensions on the CRL structure are supported, including the CRL number extension
and the authority key identifier.

int [gnutls_x509_crl_set_number], page 365 (gnutls_x509_crl_t crl, const void
* nr, size_t nr_size)

int [gnutls_x509_crl_set_authority_key_id], page 364 (gnutls_x509_crl_t crl,
const void * id, size_t id_size)

4.2.3 OCSP certificate status checking

Certificates may be revoked before their expiration time has been reached. There are several
reasons for revoking certificates, but a typical situation is when the private key associated
with a certificate has been compromised. Traditionally, Certificate Revocation Lists (CRLs)
have been used by application to implement revocation checking, however, several problems
with CRLs have been identified [RIVESTCRL).

The Online Certificate Status Protocol, or OCSP [RFC2560], is a widely implemented pro-
tocol to perform certificate revocation status checking. An application that wish to verify
the identity of a peer will verify the certificate against a set of trusted certificates and then
check whether the certificate is listed in a CRL and/or perform an OCSP check for the
certificate.

Note that in the context of a TLS session the server may provide an OCSP response that will
used during the TLS certificate verification (see [gnutls_certificate_verify_peers3|, page 288).
You may obtain this response using [gnutls_ocsp_status_request_get], page 310.

Before performing the OCSP query, the application will need to figure out the address of
the OCSP server. The OCSP server address can be provided by the local user in manual
configuration or may be stored in the certificate that is being checked. When stored in a
certificate the OCSP server is in the extension field called the Authority Information Access
(AIA). The following function extracts this information from a certificate.

Chapter 4: Authentication methods 44

int [gnutls_x509_crt_get_authority_info_access], page 383 (gnutls_x509_crt_t
crt, unsigned int seq, int what, gnutls_datum_t * data, unsigned int *
critical)

There are several functions in GnuTLS for creating and manipulating OCSP requests and
responses. The general idea is that a client application create an OCSP request object,
store some information about the certificate to check in the request, and then export the
request in DER format. The request will then need to be sent to the OCSP responder, which
needs to be done by the application (GnuTLS does not send and receive OCSP packets).
Normally an OCSP response is received that the application will need to import into an
OCSP response object. The digital signature in the OCSP response needs to be verified
against a set of trust anchors before the information in the response can be trusted.

The ASN.1 structure of OCSP requests are briefly as follows. It is useful to review the
structures to get an understanding of which fields are modified by GnuTLS functions.

OCSPRequest Di= SEQUENCE {

tbsRequest TBSRequest,

optionalSignature [0] EXPLICIT Signature OPTIONAL }
TBSRequest D= SEQUENCE {

version (0] EXPLICIT Version DEFAULT vi,

requestorName [1] EXPLICIT GeneralName OPTIONAL,

requestList SEQUENCE OF Request,

requestExtensions [2] EXPLICIT Extensions OPTIONAL }
Request 1= SEQUENCE {

reqCert CertID,

singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL }
CertID i:= SEQUENCE {

hashAlgorithm AlgorithmIdentifier,

issuerNameHash OCTET STRING, —-- Hash of Issuer’s DN

issuerKeyHash OCTET STRING, -- Hash of Issuers public key

serialNumber CertificateSerialNumber }

The basic functions to initialize, import, export and deallocate OCSP requests are the
following.

int [gnutls_ocsp_req_init], page 433 (gnutls_ocsp_req_t * req)

void [gnutls_ocsp_req_deinit], page 431 (gnutls_ocsp_req_t req)

int [gnutls_ocsp_req_import], page 433 (gnutls_ocsp_req_t req, const
gnutls_datum_t * data)

int [gnutls_ocsp_req_export], page 431 (gnutls_ocsp_req_t req, gnutls_datum_t
x data)

int [gnutls_ocsp_req_print], page 433 (gnutls_ocsp_req_t req,
gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

To generate an OCSP request the issuer name hash, issuer key hash, and the checked
certificate’s serial number are required. There are two interfaces available for setting those
in an OCSP request. The is a low-level function when you have the issuer name hash, issuer

Chapter 4: Authentication methods 45

key hash, and certificate serial number in binary form. The second is more useful if you
have the certificate (and its issuer) in a gnutls_x509_crt_t type. There is also a function
to extract this information from existing an OCSP request.

int [gnutls_ocsp_req_add_cert_id], page 431 (gnutls_ocsp_req_t req,
gnutls_digest_algorithm_t digest, const gnutls_datum_t * issuer_name_hash,
const gnutls_datum_t * issuer_key_hash, const gnutls_datum_t * serial_number)
int [gnutls_ocsp_req_add_cert], page 430 (gnutls_ocsp_req_t req,
gnutls_digest_algorithm_t digest, gnutls_x509_crt_t issuer,
gnutls_x509_crt_t cert)

int [gnutls_ocsp_req_get_cert_id], page 431 (gnutls_ocsp_req_t req, unsigned
indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t * issuer_name_hash,
gnutls_datum_t * issuer_key_hash, gnutls_datum_t * serial_number)

Each OCSP request may contain a number of extensions. Extensions are identified by an
Object Identifier (OID) and an opaque data buffer whose syntax and semantics is implied
by the OID. You can extract or set those extensions using the following functions.

int [gnutls_ocsp_req_get_extension], page 432 (gnutls_ocsp_req_t req,
unsigned indx, gnutls_datum_t * oid, unsigned int * critical, gnutls_datum_t *
data)

int [gnutls_ocsp_req_set_extension], page 434 (gnutls_ocsp_req_t req, const
char * oid, unsigned int critical, const gnutls_datum_t * data)

A common OCSP Request extension is the nonce extension (OID 1.3.6.1.5.5.7.48.1.2), which
is used to avoid replay attacks of earlier recorded OCSP responses. The nonce extension
carries a value that is intended to be sufficiently random and unique so that an attacker
will not be able to give a stale response for the same nonce.

int [gnutls_ocsp_req_get_nonce], page 432 (gnutls_ocsp_req_t req, unsigned
int * critical, gnutls_datum_t * nonce)

int [gnutls_ocsp_req_set_nonce], page 434 (gnutls_ocsp_req_t req, unsigned
int critical, const gnutls_datum_t * nonce)

int [gnutls_ocsp_req_randomize_nonce], page 434 (gnutls_ocsp_req_t req)

The OCSP response structures is a complex structure. A simplified overview of it is in
Table 4.7. Note that a response may contain information on multiple certificates.

Chapter 4: Authentication methods 46

Field Description

version The OCSP response version number (typically 1).

responder 1D An identifier of the responder (DN name or a hash of its key).
issue time The time the response was generated.

thisUpdate The issuing time of the revocation information.

nextUpdate The issuing time of the revocation information that will up-

date that one.

Revoked certificates
certificate status The status of the certificate.
certificate serial The certificate’s serial number.
revocationTime The time the certificate was revoked.

revocationReason The reason the certificate was revoked.

Table 4.7: The most important OCSP response fields.

We provide basic functions for initialization, importing, exporting and deallocating OCSP
responses.

int [gnutls_ocsp_resp_init], page 439 (gnutls_ocsp_resp_t * resp)

void [gnutls_ocsp_resp_deinit], page 435 (gnutls_ocsp_resp_t resp)

int [gnutls_ocsp_resp_import], page 438 (gnutls_ocsp_resp_t resp, const
gnutls_datum_t * data)

int [gnutls_ocsp_resp_export], page 435 (gnutls_ocsp_resp_t resp,
gnutls_datum_t * data)

int [gnutls_ocsp_resp_print], page 439 (gnutls_ocsp_resp_t resp,
gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

The utility function that extracts the revocation as well as other information from a response
is shown below.

int gnutls_ocsp_resp_get_single (gnutls_ocsp_resp_t resp, [Function]
unsigned indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t *
issuer_name_hash, gnutls_.datum_t * issuer_key_hash, gnutls_datum_t *
serial_number, unsigned int * cert_status, time_t * this_update,
time_t * next_update, time_t * revocation_time, unsigned int *
revocation_reason)
resp: should contain a gnutls_ocsp_resp_t structure

Chapter 4: Authentication methods 47

indx: Specifies response number to get. Use (0) to get the first one.

digest: output variable with gnutls_digest_algorithm_t hash algorithm

issuer_name_hash: output buffer with hash of issuer’s DN

issuer_key_hash: output buffer with hash of issuer’s public key

serial_number: output buffer with serial number of certificate to check

cert_status: a certificate status, a gnutls_ocsp_cert_status_t enum.

this_update: time at which the status is known to be correct.

next_update: when newer information will be available, or (time_t)-1 if unspecified

revocation_time: when cert_status is GNUTLS_OCSP_CERT_REVOKED , holds time of
revocation.

revocation_reason: revocation reason, a gnutls_x509_crl_reason_t enum.

This function will return the certificate information of the indx ’ed response in the
Basic OCSP Response resp . The information returned corresponds to the OCSP
SingleResponse structure except the final singleExtensions.

Each of the pointers to output variables may be NULL to indicate that the caller is
not interested in that value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned. If you have reached the last CertID available GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE will be returned.

The possible revocation reasons available in an OCSP response are shown below.

Chapter 4: Authentication methods 48

GNUTLS_X509_CRLREASON_UNSPECIFIED
Unspecified reason.

GNUTLS_X509_CRLREASON_KEYCOMPROMISE
Private key compromised.

GNUTLS_X509_CRLREASON_CACOMPROMISE
CA compromised.

GNUTLS_X509_CRLREASON_AFFILTATIONCHANGED
Affiliation has changed.

GNUTLS_X509_CRLREASON_SUPERSEDED
Certificate superseded.

GNUTLS_X509_CRLREASON_CESSATIONOFOPERATION
Operation has ceased.

GNUTLS_X509_CRLREASON_CERTIFICATEHOLD
Certificate is on hold.

GNUTLS_X509_CRLREASON_REMOVEFROMCRL
Will be removed from delta CRL.

GNUTLS_X509_CRLREASON_PRIVILEGEWITHDRAWN
Privilege withdrawn.

GNUTLS_X509_CRLREASON_AACOMPROMISE
AA compromised.

Figure 4.5: The revocation reasons

Note, that the OCSP response needs to be verified against some set of trust anchors before
it can be relied upon. It is also important to check whether the received OCSP response
corresponds to the certificate being checked.

int [gnutls_ocsp_resp_verify], page 439 (gnutls_ocsp_resp_t resp,
gnutls_x509_trust_list_t trustlist, unsigned int * verify, unsigned int flags)
int [gnutls_ocsp_resp_verify_direct], page 440 (gnutls_ocsp_resp_t resp,
gnutls_x509_crt_t issuer, unsigned int * verify, unsigned int flags)

int [gnutls_ocsp_resp_check_crt], page 434 (gnutls_ocsp_resp_t resp, unsigned
int indx, gnutls_x509_crt_t crt)

4.2.4 Managing encrypted keys

Transferring or storing private keys in plain may not be a good idea, since any compromise
is irreparable. Storing the keys in hardware security modules (see Section 5.2 [Smart cards
and HSMs|, page 85) could solve the storage problem but it is not always practical or
efficient enough. This section describes ways to store and transfer encrypted private keys.

There are methods for key encryption, namely the PKCS #8, PKCS #12 and OpenSSL’s
custom encrypted private key formats. The PKCS #8 and the OpenSSL’s method allow
encryption of the private key, while the PKCS #12 method allows, in addition, the bundling

Chapter 4: Authentication methods 49

of accompanying data into the structure. That is typically the corresponding certificate, as
well as a trusted CA certificate.

High level functionality

Generic and higher level private key import functions are available, that import plain or
encrypted keys and will auto-detect the encrypted key format.

int gnutls_privkey_import_x509_raw (gnutls_privkey_t pkey, const [Function]

gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char* password,
unsigned int flags)

pkey: The private key

data: The private key data to be imported

format: The format of the private key

password: A password (optional)

flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t

This function will import the given private key to the abstract gnutls_privkey_t
structure.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int gnutls_x509_privkey_import2 (gnutls_x509_privkey_t key, const [Function]
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char* password,
unsigned int flags)
key: The structure to store the parsed key

data: The DER or PEM encoded key.

format: One of DER or PEM

password: A password (optional)

flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t

This function will import the given DER or PEM encoded key, to the native gnutls_
x509_privkey_t format, irrespective of the input format. The input format is auto-
detected.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

If the provided key is encrypted but no password was given, then GNUTLS_E_
DECRYPTION_FAILED is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Any keys imported using those functions can be imported to a certificate credentials struc-
ture using [gnutls_certificate_set_key|, page 480, or alternatively they can be directly im-
ported using [gnutls_certificate_set_x509_key _file2], page 282.

Chapter 4: Authentication methods 50

PKCS #8 structures

PKCS #8 keys can be imported and exported as normal private keys using the functions
below. An addition to the normal import functions, are a password and a flags argument.
The flags can be any element of the gnutls_pkcs_encrypt_flags_t enumeration. Note
however, that GnuTLS only supports the PKCS #5 PBES2 encryption scheme. Keys
encrypted with the obsolete PBES1 scheme cannot be decrypted.

int [gnutls_x509_privkey_import_pkcs8], page 422 (gnutls_x509_privkey_t key,
const gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *
password, unsigned int flags)

int [gnutls_x509_privkey_export_pkcs8], page 418 (gnutls_x509_privkey_t key,
gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags, void *
output_data, size_t * output_data_size)

int [gnutls_x509_privkey_export2_pkcs8], page 416 (gnutls_x509_privkey_t
key, gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags,
gnutls_datum_t * out)

GNUTLS_PKCS_PLAIN
Unencrypted private key.

GNUTLS_PKCS_USE_PKCS12_3DES
PKCS-12 3DES.

GNUTLS_PKCS_USE_PKCS12_ARCFQOUR
PKCS-12 ARCFOUR.

GNUTLS_PKCS_USE_PKCS12_RC2_40
PKCS-12 RC2-40.

GNUTLS_PKCS_USE_PBES2_3DES
PBES2 3DES.

GNUTLS_PKCS_USE_PBES2_AES_128
PBES2 AES-128.

GNUTLS_PKCS_USE_PBES2_AES_192
PBES2 AES-192.

GNUTLS_PKCS_USE_PBES2_AES_256
PBES2 AES-256.

GNUTLS_PKCS_NULL_PASSWORD
Some schemas distinguish between an empty and a NULL password.

Figure 4.6: Encryption flags

PKCS #12 structures

A PKCS #12 structure [PKCS12] usually contains a user’s private keys and certificates.
It is commonly used in browsers to export and import the user’s identities. A file con-
taining such a key can be directly imported to a certificate credentials structure by using
[gnutls_certificate_set_x509_simple_pkes12_file], page 283.

Chapter 4: Authentication methods 51

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
A bag of type encrypted should be decrypted in order for its data to be accessed.

To reduce the complexity in parsing the structures the simple helper function
[gnutls_pkes12_simple_parse], page 465 is provided. For more advanced uses, manual
parsing of the structure is required using the functions below.

int [gnutls_pkcsl2_get_bag], page 464 (gnutls_pkcsl2_t pkcs12, int indx,
gnutls_pkcsl12_bag_t bag)

int [gnutls_pkcsl2_verify_mac], page 466 (gnutls_pkcsl2_t pkcs12, const char
* pass)

int [gnutls_pkcsl12_bag_decrypt], page 460 (gnutls_pkcsl12_bag_t bag, const
char * pass)

int [gnutls_pkcsl2_bag_get_count], page 461 (gnutls_pkcsl2_bag_t bag)

int gnutls_pkcsl12_simple_parse (gnutls_pkcsl2_t p12, const char * [Function]
password, gnutls_x509_privkey_t * key, gnutls_x509_crt_t ** chain, unsigned
int * chain_len, gnutls_x509_crt_t ** extra_certs, unsigned int *
extra_certs_len, gnutls_x509_crl_t * crl, unsigned int flags)
pl2: the PKCS12 blob.

password: optional password used to decrypt PKCS12 blob, bags and keys.

key: a structure to store the parsed private key.

chain: the corresponding to key certificate chain (may be NULL)

chain_len: will be updated with the number of additional (may be NULL)
extra_certs: optional pointer to receive an array of additional certificates found in the
PKCS12 blob (may be NULL).

extra_certs_len: will be updated with the number of additional certs (may be NULL).
crl: an optional structure to store the parsed CRL (may be NULL).

flags: should be zero or one of GNUTLS_PKCS12_SP_*

This function parses a PKCS12 blob in p12blob and extracts the private key, the
corresponding certificate chain, and any additional certificates and a CRL.

The extra_certs_ret and extra_certs_len parameters are optional and both may
be set to NULL . If either is non-NULL , then both must be set.

Encrypted PKCS12 bags and PKCS8 private keys are supported. However, only
password based security, and the same password for all operations, are supported.

A PKCSI12 file may contain many keys and/or certificates, and there is no way to
identify which key/certificate pair you want. You should make sure the PKCS12 file
only contain one key/certificate pair and/or one CRL.

It is believed that the limitations of this function are acceptable for common usage,
and that any more flexibility would introduce complexity that would make it harder
to use this functionality at all.

If the provided structure has encrypted fields but no password is provided then this
function returns GNUTLS_E_DECRYPTION_FAILED .

Chapter 4: Authentication methods 52

Note that normally the chain constructed does not include self signed certificates, to
comply with TLS’ requirements. If, however, the flag GNUTLS_PKCS12_SP_INCLUDE_
SELF_SIGNED is specified then self signed certificates will be included in the chain.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1

int [gnutls_pkcsl12_bag_get_datal, page 461 (gnutls_pkcsi2_bag_t bag, int
indx, gnutls_datum_t * data)

int [gnutls_pkcsl12_bag_get_key_id], page 461 (gnutls_pkcsl2_bag_t bag, int
indx, gnutls_datum_t * id)

int [gnutls_pkcsl2_bag_get_friendly_namel], page 461 (gnutls_pkcsl2_bag_t
bag, int indx, char ** name)

The functions below are used to generate a PKCS #12 structure. An example of their usage
is shown at Section 7.4.4 [PKCS #12 structure generation example], page 221.

int [gnutls_pkcsl2_set_bagl, page 465 (gnutls_pkcsl2_t pkcs12,
gnutls_pkcsl12_bag_t bag)

int [gnutls_pkcsl12_bag_encrypt], page 460 (gnutls_pkcsl2_bag_t bag, const
char * pass, unsigned int flags)

int [gnutls_pkcsl2_generate_mac], page 464 (gnutls_pkcsl2_t pkcs12, const
char * pass)

int [gnutls_pkcs12_bag_set_datal, page 462 (gnutls_pkcsl2_bag_t bag,
gnutls_pkcs12_bag_type_t type, const gnutls_datum_t * data)

int [gnutls_pkcsl12_bag_set_crl], page 462 (gnutls_pkcsl2_bag_t bag,
gnutls_x509_crl_t crl)

int [gnutls_pkcsl2_bag_set_crt], page 462 (gnutls_pkcsl2_bag_t bag,
gnutls_x509_crt_t crt)

int [gnutls_pkcsl12_bag_set_key_id], page 463 (gnutls_pkcsl2_bag_t bag, int
indx, const gnutls_datum_t * id)

int [gnutls_pkcsl2_bag_set_friendly_name], page 463 (gnutls_pkcsl2_bag_t
bag, int indx, const char * name)

OpenSSL encrypted keys

Unfortunately the structures discussed in the previous sections are not the only struc-
tures that may hold an encrypted private key. For example the OpenSSL library offers
a custom key encryption method. Those structures are also supported in GnuTLS with
[gnutls_x509_privkey_import_openssl|, page 422.

int gnutls_x509_privkey_import_openssl (gnutls_x509_privkey_t [Function]
key, const gnutls_datum_t * data, const char* password)
key: The structure to store the parsed key

data: The DER or PEM encoded key.
password: the password to decrypt the key (if it is encrypted).

This function will convert the given PEM encrypted to the native
gnutls_x509_privkey_t format. The output will be stored in key .

Chapter 4: Authentication methods 53

The password should be in ASCII. If the password is not provided or wrong then
GNUTLS_E_DECRYPTION_FAILED will be returned.

If the Certificate is PEM encoded it should have a header of "PRIVATE KEY" and
the "DEK-Info" header.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.2.5 Invoking certtool

Tool to parse and generate X.509 certificates, requests and private keys. It can be used
interactively or non interactively by specifying the template command line option.

This section was generated by AutoGen, using the agtexi-cmd template and the option

descriptions for the certtool program. This software is released under the GNU General
Public License, version 3 or later.

certtool help/usage (--help)
This is the automatically generated usage text for certtool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

certtool - GnuTLS certificate tool - Ver. QVERSIONG@

USAGE: 1t-certtool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, -—-debug=num Enable debugging.
- It must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
--infile=file Input file
- file must pre-exist
--outfile=str Output file
-s, ——generate-self-signed Generate a self-signed certificate
-c, ——generate-certificate Generate a signed certificate
--generate-proxy Generates a proxy certificate
--generate-crl Generate a CRL
-u, --update-certificate Update a signed certificate
-p, ——generate-privkey Generate a private key
-q, ——generate-request Generate a PKCS #10 certificate request
- prohibits these options:
infile
-e, —--verify-chain Verify a PEM encoded certificate chain.
--verify Verify a PEM encoded certificate chain using a trusted list.

- requires these options:
load-ca-certificate

Chapter 4: Authentication methods 54

—--verify-crl Verify a CRL using a trusted list.
- requires these options:
load-ca-certificate
--generate-dh-params Generate PKCS #3 encoded Diffie-Hellman parameters.

--get-dh-params Get the included PKCS #3 encoded Diffie-Hellman parameters.
—-—-dh-info Print information PKCS #3 encoded Diffie-Hellman parameters
--load-privkey=str Loads a private key file

--load-pubkey=str Loads a public key file

--load-request=£file Loads a certificate request file

- file must pre-exist
—-—load-certificate=str Loads a certificate file
--load-ca-privkey=str Loads the certificate authority’s private key file
--load-ca-certificate=str Loads the certificate authority’s certificate file

--password=str Password to use
--hex-numbers Print big number in an easier format to parse
--cprint In certain operations it prints the information is C-friendly
--null-password Enforce a NULL password
-i, —--certificate-info Print information on the given certificate

--certificate-pubkey Print certificate’s public key
--pgp-certificate-info Print information on the given OpenPGP certificate

-—-pgp-ring-info Print information on the given OpenPGP keyring structure
-1, -—crl-info Print information on the given CRL structure
--crqg-info Print information on the given certificate request
--no-crq-extensions Do not use extensions in certificate requests
--pl2-info Print information on a PKCS #12 structure
--p7-info Print information on a PKCS #7 structure
--smime-to-p7 Convert S/MIME to PKCS #7 structure
-k, --key-info Print information on a private key
--pgp-key-info Print information on an OpenPGP private key
--pubkey-info Print information on a public key
--v1 Generate an X.509 version 1 certificate (with no extensions)
--to-pl2 Generate a PKCS #12 structure

- requires these options:
load-certificate

-—to-p8 Generate a PKCS #8 structure
-8, —--pkcs8 Use PKCS #8 format for private keys

--rsa Generate RSA key

--dsa Generate DSA key

--ecc Generate ECC (ECDSA) key

-—-ecdsa This is an alias for ’ecc’

-—hash=str Hash algorithm to use for signing.

--inder Use DER format for input certificates and private keys.
- disabled as --no-inder

-—-inraw This is an alias for ’inder’

—--outder Use DER format for output certificates and private keys

- disabled as —--no-outder
—--outraw This is an alias for ’outder’

Chapter 4: Authentication methods 55

--bits=num Specify the number of bits for key generate
--sec—-param=str Specify the security level [low, legacy, normal, high, ultral
--disable-quick-random No effect
--template=file Template file to use for non-interactive operation
- file must pre-exist
—-—pkcs—cipher=str Cipher to use for PKCS #8 and #12 operations
-v, —-version[=arg] Output version information and exit
-h, --help Display extended usage information and exit
-1, —-more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Tool to parse and generate X.509 certificates, requests and private keys.
It can be used interactively or non interactively by specifying the
template command line option.

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)
This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

generate-request option (-q)

This is the “generate a pkcs #10 certificate request” option.
This option has some usage constraints. It:

e must not appear in combination with any of the following options: infile.
Will generate a PKCS #10 certificate request. To specify a private key use —load-privkey.
verify-chain option (-e)

This is the “verify a pem encoded certificate chain.” option. The last certificate in the
chain must be a self signed one.

verify option
This is the “verify a pem encoded certificate chain using a trusted list.” option.

This option has some usage constraints. It:

e must appear in combination with the following options: load-ca-certificate.
The trusted certificate list must be loaded with —load-ca-certificate.
verify-crl option

This is the “verify a crl using a trusted list.” option.

This option has some usage constraints. It:

Chapter 4: Authentication methods 56

e must appear in combination with the following options: load-ca-certificate.

The trusted certificate list must be loaded with —load-ca-certificate.

get-dh-params option

This is the “get the included pkcs #3 encoded diffie-hellman parameters.” option. Returns
stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The
parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.

load-privkey option

This is the “loads a private key file” option. This option takes an argument string. This
can be either a file or a PKCS #11 URL

load-pubkey option

This is the “loads a public key file” option. This option takes an argument string. This can
be either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes an argument string. This can

be either a file or a PKCS #11 URL

load-ca-privkey option

This is the “loads the certificate authority’s private key file” option. This option takes an
argument string. This can be either a file or a PKCS #11 URL

load-ca-certificate option

This is the “loads the certificate authority’s certificate file” option. This option takes an
argument string. This can be either a file or a PKCS #11 URL

cprint option

This is the “in certain operations it prints the information is c-friendly format” option. In
certain operations it prints the information is C-friendly format, suitable for including into
C programs.

null-password option

This is the “enforce a null password” option. This option enforces a NULL password. This
may be different than the empty password in some schemas.

pubkey-info option

This is the “print information on a public key” option. The option combined with —load-
request, —load-pubkey, —load-privkey and —load-certificate will extract the public key of the
object in question.

Chapter 4: Authentication methods 57

to-pl12 option
This is the “generate a pkcs #12 structure” option.
This option has some usage constraints. It:

e must appear in combination with the following options: load-certificate.

It requires a certificate, a private key and possibly a CA certificate to be specified.

rsa option

This is the “generate rsa key” option. When combined with —generate-privkey generates
an RSA private key.

dsa option

This is the “generate dsa key” option. When combined with —generate-privkey generates a
DSA private key.

ecc option

This is the “generate ecc (ecdsa) key” option. When combined with —generate-privkey
generates an elliptic curve private key to be used with ECDSA.

ecdsa option

This is an alias for the ecc option, see [certtool ecc|, page 57.

hash option

This is the “hash algorithm to use for signing.” option. This option takes an argument
string. Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

inder option

This is the “use der format for input certificates and private keys.” option. The input files
will be assumed to be in DER or RAW format. Unlike options that in PEM input would
allow multiple input data (e.g. multiple certificates), when reading in DER format a single
data structure is read.

inraw option

This is an alias for the inder option, see [certtool inder|, page 57.

outder option

This is the “use der format for output certificates and private keys” option. The output
will be in DER or RAW format.

outraw option

This is an alias for the outder option, see [certtool outder], page 57.

Chapter 4: Authentication methods 58

sec-param option

7

This is the “specify the security level [low, legacy, normal, high, ultra].” option. This option

takes an argument string Security parameter. This is alternative to the bits option.

pkcs-cipher option
This is the “cipher to use for pkcs #8 and #12 operations” option. This option takes an

argument string Cipher. Cipher may be one of 3des, 3des-pkcs12, aes-128, aes-192, aes-256,
rc2-40, arcfour.

certtool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

certtool See Also
plltool (1)

certtool Examples

Generating private keys
To create an RSA private key, run:
$ certtool --generate-privkey --outfile key.pem --rsa

To create a DSA or elliptic curves (ECDSA) private key use the above command combined
with ’dsa’ or ’ecc’ options.

Generating certificate requests

To create a certificate request (needed when the certificate is issued by another party), run:

certtool --generate-request --load-privkey key.pem \
-—outfile request.pem

If the private key is stored in a smart card you can generate a request by specifying the
private key object URL.

$./certtool --generate-request --load-privkey "pkcslil:..." \
--load-pubkey "pkcsll:..." --outfile request.pem

Generating a self-signed certificate

To create a self signed certificate, use the command:
$ certtool --generate-privkey --outfile ca-key.pem
$ certtool --generate-self-signed --load-privkey ca-key.pem \
--outfile ca-cert.pem
Note that a self-signed certificate usually belongs to a certificate authority, that signs other
certificates.

Chapter 4: Authentication methods 59

Generating a certificate

To generate a certificate using the previous request, use the command:

$ certtool --generate-certificate --load-request request.pem \
--outfile cert.pem --load-ca-certificate ca-cert.pem \
--load-ca-privkey ca-key.pem
To generate a certificate using the private key only, use the command:

$ certtool --generate-certificate --load-privkey key.pem \
--outfile cert.pem --load-ca-certificate ca-cert.pem \
--load-ca-privkey ca-key.pem

Certificate information

To view the certificate information, use:

$ certtool --certificate-info --infile cert.pem

PKCS #12 structure generation

To generate a PKCS #12 structure using the previous key and certificate, use the command:

$ certtool --load-certificate cert.pem --load-privkey key.pem \
-—to-pl2 --outder --outfile key.pl2

Some tools (reportedly web browsers) have problems with that file because it does not
contain the CA certificate for the certificate. To work around that problem in the tool, you
can use the —load-ca-certificate parameter as follows

$ certtool --load-ca-certificate ca.pem \
--load-certificate cert.pem --load-privkey key.pem \
--to-pl2 --outder --outfile key.pl2

Diffie-Hellman parameter generation

To generate parameters for Diffie-Hellman key exchange, use the command:

$ certtool --generate-dh-params --outfile dh.pem --sec-param normal

Proxy certificate generation

Proxy certificate can be used to delegate your credential to a temporary, typically short-
lived, certificate. To create one from the previously created certificate, first create a tem-
porary key and then generate a proxy certificate for it, using the commands:

$ certtool --generate-privkey > proxy-key.pem

$ certtool --generate-proxy --load-ca-privkey key.pem \
--load-privkey proxy-key.pem --load-certificate cert.pem \
--outfile proxy-cert.pem

Certificate revocation list generation

To create an empty Certificate Revocation List (CRL) do:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \
--load-ca-certificate x509-ca.pem
To create a CRL that contains some revoked certificates, place the certificates in a file and
use --load-certificate as follows:

Chapter 4: Authentication methods 60

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \
--load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem

To verify a Certificate Revocation List (CRL) do:

$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

certtool Files

Certtool’s template file format

A template file can be used to avoid the interactive questions of certtool. Initially create a
file named ’cert.cfg’ that contains the information about the certificate. The template can
be used as below:

$ certtool --generate-certificate cert.pem --load-privkey key.pem \
--template cert.cfg \
--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem
An example certtool template file that can be used to generate a certificate request or a self
signed certificate follows.
X.509 Certificate options
#
DN options

The organization of the subject.
organization = "Koko inc."

The organizational unit of the subject.
unit = "sleeping dept."

The locality of the subject.
locality =

The state of the certificate owner.
state = "Attiki"

The country of the subject. Two letter code.
country = GR

The common name of the certificate owner.
cn = "Cindy Lauper"

A user id of the certificate owner.
#uid = "clauper"

Set domain components
#dc = "name"

#dc = "domain"

If the supported DN OIDs are not adequate you can set

Chapter 4: Authentication methods 61

any OID here.

For example set the X.520 Title and the X.520 Pseudonym
by using OID and string pairs.

#dn_oid = 2.5.4.12 Dr.

#dn_oid = 2.5.4.65 jackal

This is deprecated and should not be used in new
certificates.
pkcs9_email = "none@none.org"

+*

An alternative way to set the certificate’s distinguished name directly
is with the "dn" option. The attribute names allowed are:

C (country), street, 0 (organization), OU (unit), title, CN (common name),
L (locality), ST (state), placeOfBirth, gender, countryOfCitizenship,
countryOfResidence, serialNumber, telephoneNumber, surName, initials,
generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name,
businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName,
jurisdictionOfIncorporationStateOrProvinceName,
jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs.

H OH R HF R R R H

#dn = "cn=Nik,st=Attiki,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias"

The serial number of the certificate
serial = 007

In how many days, counting from today, this certificate will expire.
expiration_days = 700

X.509 v3 extensions
A dnsname in case of a WWW server.
#dns_name = "www.none.org"

#dns_name = "www.morethanone.org"

A subject alternative name URI
#uri = "http://www.example.com"

An IP address in case of a server.
#ip_address = "192.168.1.1"

An email in case of a person
email = "none@none.org"

Challenge password used in certificate requests
challenge_password = 123456

Password when encrypting a private key

Chapter 4: Authentication methods 62

#password = secret

An URL that has CRLs (certificate revocation lists)
available. Needed in CA certificates.
#crl_dist_points = "http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not
#ca

for microsoft smart card logon
key_purpose_oid = 1.3.6.1.4.1.311.20.2.2

Other predefined key purpose 0IDs

Whether this certificate will be used for a TLS client
#tls_www_client

Whether this certificate will be used for a TLS server
#tls_www_server

Whether this certificate will be used to sign data (needed
in TLS DHE ciphersuites).
signing_key

Whether this certificate will be used to encrypt data (needed

in TLS RSA ciphersuites). Note that it is preferred to use different
keys for encryption and signing.

encryption_key

Whether this key will be used to sign other certificates.
#cert_signing_key

Whether this key will be used to sign CRLs.
#crl_signing_key

Whether this key will be used to sign code.
#code_signing_ key

Whether this key will be used to sign OCSP data.
#ocsp_signing_key

Whether this key will be used for time stamping.
#time_stamping_key

Whether this key will be used for IPsec IKE operations.
#ipsec_ike_key

Chapter 4: Authentication methods 63

end of key purpose 0IDs

When generating a certificate from a certificate

request, then honor the extensions stored in the request
and store them in the real certificate.
#honor_crq_extensions

Path length contraint. Sets the maximum number of

certificates that can be used to certify this certificate.
(i.e. the certificate chain length)

#path_len = -1

#path_len 2

0OCSP URI
ocsp_uri = http://my.ocsp.server/ocsp

CA issuers URI
ca_issuers_uri = http://my.ca.issuer

+*

Certificate policies

policyl = 1.3.6.1.4.1.5484.1.10.99.1.0

policyl_txt = "This is a long policy to summarize"
policyl_url = http://www.example.com/a-policy-to-read

H O B H

*

policy2 = 1.3.6.1.4.1.5484.1.10.99.1.1
policy2_txt = "This is a short policy"
policy2_url = http://www.example.com/another-policy-to-read

**

*

Options for proxy certificates
proxy_policy_language = 1.3.6.1.5.5.7.21.1

Options for generating a CRL

next CRL update will be in 43 days (wow)
#crl_next_update = 43

this is the 5th CRL by this CA
#crl_number = b5

4.2.6 Invoking ocsptool

Ocsptool is a program that can parse and print information about OCSP requests/responses,
generate requests and verify responses.

Chapter 4: Authentication methods 64

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the ocsptool program. This software is released under the GNU General
Public License, version 3 or later.

ocsptool help/usage (--help)
This is the automatically generated usage text for ocsptool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

ocsptool - GnuTLS OCSP tool

Usage: ocsptool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, —--debug=num Enable debugging.
- it must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
--infile=file Input file
- file must pre-exist
--outfile=str Qutput file
—--ask[=arg] Ask an OCSP/HTTP server on a certificate validity
- requires these options:
load-cert
load-issuer
-e, —--verify-response Verify response
-i, --request-info Print information on a OCSP request
-j, ——response-info Print information on a OCSP response
-q, ——generate-request Generate an 0OCSP request
—--nonce Don’t add nonce to OCSP request
- disabled as ’--no-nonce’
--load-issuer=file Read issuer certificate from file
- file must pre-exist
--load-cert=file Read certificate to check from file
- file must pre-exist
--load-trust=file Read OCSP trust anchors from file

- prohibits the option ’load-signer’
- file must pre-exist

-—-load-signer=file Read 0OCSP response signer from file
- prohibits the option ’load-trust’
- file must pre-exist

—--inder Use DER format for input certificates and private keys
- disabled as ’--no-inder’

-Q, ——load-request=file Read DER encoded OCSP request from file

- file must pre-exist

Chapter 4: Authentication methods 65

-S, ——load-response=file Read DER encoded OCSP response from file
- file must pre-exist

-v, --version[=arg] output version information and exit
-h, --help display extended usage information and exit
-1, —-more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Ocsptool is a program that can parse and print information about OCSP
requests/responses, generate requests and verify responses.

Please send bug reports to: <bug-gnutls@gnu.org>

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

ask option

This is the “ask an ocsp/http server on a certificate validity” option. This option takes an
optional argument string server name |url.

This option has some usage constraints. It:

e must appear in combination with the following options: load-cert, load-issuer.

Connects to the specified HTTP OCSP server and queries on the validity of the loaded
certificate.

ocsptool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.
ocsptool See Also

certtool (1)
ocsptool Examples

Print information about an OCSP request

To parse an OCSP request and print information about the content, the -i or --request-
info parameter may be used as follows. The -Q parameter specify the name of the file
containing the OCSP request, and it should contain the OCSP request in binary DER
format.

Chapter 4: Authentication methods 66

$ ocsptool -i -Q ocsp-request.der
The input file may also be sent to standard input like this:

$ cat ocsp-request.der | ocsptool --request-info

Print information about an OCSP response

Similar to parsing OCSP requests, OCSP responses can be parsed using the -j or --
response-info as follows.

$ ocsptool -j -Q ocsp-response.der
$ cat ocsp-response.der | ocsptool --response-info

Generate an OCSP request

The -q or —--generate-request parameters are used to generate an OCSP request. By
default the OCSP request is written to standard output in binary DER. format, but can be
stored in a file using —-outfile. To generate an OCSP request the issuer of the certificate
to check needs to be specified with --load-issuer and the certificate to check with —-
load-cert. By default PEM format is used for these files, although --inder can be used
to specify that the input files are in DER format.

$ ocsptool -q --load-issuer issuer.pem --load-cert client.pem \
--outfile ocsp-request.der

When generating OCSP requests, the tool will add an OCSP extension containing a nonce.
This behaviour can be disabled by specifying --no-nonce.

Verify signature in OCSP response

To verify the signature in an OCSP response the -e or —-verify-response parameter is
used. The tool will read an OCSP response in DER format from standard input, or from
the file specified by --load-response. The OCSP response is verified against a set of
trust anchors, which are specified using --load-trust. The trust anchors are concatenated
certificates in PEM format. The certificate that signed the OCSP response needs to be in
the set of trust anchors, or the issuer of the signer certificate needs to be in the set of trust
anchors and the OCSP Extended Key Usage bit has to be asserted in the signer certificate.

$ ocsptool -e --load-trust issuer.pem \
--load-response ocsp-response.der

The tool will print status of verification.

Verify signature in OCSP response against given certificate

It is possible to override the normal trust logic if you know that a certain certificate is
supposed to have signed the OCSP response, and you want to use it to check the signature.
This is achieved using --load-signer instead of -—load-trust. This will load one certifi-
cate and it will be used to verify the signature in the OCSP response. It will not check the
Extended Key Usage bit.

$ ocsptool -e --load-signer ocsp-signer.pem \
--load-response ocsp-response.der

This approach is normally only relevant in two situations. The first is when the OCSP
response does not contain a copy of the signer certificate, so the ——load-trust code would

Chapter 4: Authentication methods 67

fail. The second is if you want to avoid the indirect mode where the OCSP response signer
certificate is signed by a trust anchor.

Real-world example

Here is an example of how to generate an OCSP request for a certificate and to verify the
response. For illustration we’ll use the blog.josefsson.org host, which (as of writing)
uses a certificate from CACert. First we’ll use gnutls-cli to get a copy of the server
certificate chain. The server is not required to send this information, but this particular
one is configured to do so.

$ echo | gnutls-cli -p 443 blog.josefsson.org —--print-cert > chain.pem
Use a text editor on chain.pem to create three files for each separate certificates, called

cert.pem for the first certificate for the domain itself, secondly issuer.pem for the inter-
mediate certificate and root.pem for the final root certificate.

The domain certificate normally contains a pointer to where the OCSP responder is located,
in the Authority Information Access Information extension. For example, from certtool
-i < cert.pen there is this information:

Authority Information Access Information (not critical):
Access Method: 1.3.6.1.5.5.7.48.1 (id-ad-ocsp)
Access Location URI: http://ocsp.CAcert.org/

This means the CA support OCSP queries over HTTP. We are now ready to create a OCSP
request for the certificate.
$ ocsptool --ask ocsp.CAcert.org --load-issuer issuer.pem \
--load-cert cert.pem --outfile ocsp-response.der

The request is sent via HT'TP to the OCSP server address specified. If the address is
ommited ocsptool will use the address stored in the certificate.

4.2.7 Invoking danetool
Tool to generate and check DNS resource records for the DANE protocol.
This section was generated by AutoGen, using the agtexi-cmd template and the option

descriptions for the danetool program. This software is released under the GNU General
Public License, version 3 or later.

danetool help/usage (--help)
This is the automatically generated usage text for danetool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

danetool - GnuTLS DANE tool
Usage: danetool [-<flag> [<val>] | --<name>[{=| }<val>]]...

-d, --debug=num Enable debugging.
- it must be in the range:

Chapter 4: Authentication methods 68

-V, —--verbose
——infile=file

-—outfile=str
--load-pubkey=str
--load-certificate=str
--dlv=str

—-hash=str

—-check=str

—-check-ee

—--check-ca

--insecure

--local-dns

—-inder

——inraw
-—tlsa-rr

—-host=str

--proto=str

——port=num

--ca
Authority.

--x509

--local

--domain
-v, —--version[=arg]
-h, --help
-1, ——more-help

Options are specified by doub
hyphen and the flag character

Tool to generate and check DN

Please send bug reports to:

debug option (-d)

0 to 9999

More verbose output

- may appear multiple times
Input file

- file must pre-exist
Output file
Loads a public key file
Loads a certificate file
Sets a DLV file
Hash algorithm to use for signing.
Check a host’s DANE TLSA entry.
Check only the end-entity’s certificate.
Check only the CA’s certificate.
Do not verify any DNSSEC signature.
Use the local DNS server for DNSSEC resolving.

- disabled as ’-—-no-local-dns’
Use DER format for input certificates and private keys.
- disabled as ’--no-inder’

an alias for the ’inder’ option
Print the DANE RR data on a certificate or public key
- requires the option ’host’
Specify the hostname to be used in the DANE RR
The protocol set for DANE data (tcp, udp etc.)
Specify the port number for the DANE data.
Whether the provided certificate or public key is a Certifica

Use the hash of the X.509 certificate, rather than the public
an alias for the ’domain’ option
- enabled by default
The provided certificate or public key is issued by the local
- disabled as ’--no-domain’
- enabled by default
output version information and exit
display extended usage information and exit
extended usage information passed thru pager

led hyphens and their name or by a single

S resource records for the DANE protocol.

<bug-gnutls@gnu.org>

This is the “enable debugging.” option. This option takes an argument number. Specifies

the debug level.

Chapter 4: Authentication methods 69

load-pubkey option

This is the “loads a public key file” option. This option takes an argument string. This can
be either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes an argument string. This can
be either a file or a PKCS #11 URL

dlv option

This is the “sets a dlv file” option. This option takes an argument string. This sets a DLV
file to be used for DNSSEC verification.

hash option

This is the “hash algorithm to use for signing.” option. This option takes an argument
string. Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

check option

This is the “check a host’s dane tlsa entry.” option. This option takes an argument string.
Obtains the DANE TLSA entry from the given hostname and prints information. Note
that the actual certificate of the host has to be provided using —load-certificate.
check-ee option

This is the “check only the end-entity’s certificate.” option. Checks the end-entity’s certifi-
cate only. Trust anchors or CAs are not considered.

check-ca option

This is the “check only the ca’s certificate.” option. Checks the trust anchor’s and CA’s
certificate only. End-entities are not considered.

insecure option

This is the “do not verify any dnssec signature.” option. Ignores any DNSSEC signature
verification results.

local-dns option

This is the “use the local dns server for dnssec resolving.” option. This option will use the
local DNS server for DNSSEC. This is disabled by default due to many servers not allowing
DNSSEC.

inder option

This is the “use der format for input certificates and private keys.” option. The input files
will be assumed to be in DER or RAW format. Unlike options that in PEM input would
allow multiple input data (e.g. multiple certificates), when reading in DER format a single
data structure is read.

Chapter 4: Authentication methods 70

inraw option

This is an alias for the inder option, see [danetool inder], page 69.

tlsa-rr option

This is the “print the dane rr data on a certificate or public key” option.
This option has some usage constraints. It:

e must appear in combination with the following options: host.

This command prints the DANE RR data needed to enable DANE on a DNS server.

host option

This is the “specify the hostname to be used in the dane rr” option. This option takes an
argument string Hostname. This command sets the hostname for the DANE RR.

proto option

2

This is the “the protocol set for dane data (tcp, udp etc.)” option. This option takes an

argument string Protocol. This command specifies the protocol for the service set in the
DANE data.

ca option

This is the “whether the provided certificate or public key is a certificate authority.” option.
Marks the DANE RR as a CA certificate if specified.

x509 option

This is the “use the hash of the x.509 certificate, rather than the public key.” option. This
option forces the generated record to contain the hash of the full X.509 certificate. By
default only the hash of the public key is used.

local option

This is an alias for the domain option, see [danetool domain], page 70.

domain option

This is the “the provided certificate or public key is issued by the local domain.” option.
This option has some usage constraints. It:
e is enabled by default.

DANE distinguishes certificates and public keys offered via the DNSSEC to trusted and
local entities. This flag indicates that this is a domain-issued certificate, meaning that
there could be no CA involved.

danetool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

Chapter 4: Authentication methods 71

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

danetool See Also

certtool (1)
danetool Examples

DANE TLSA RR generation

To create a DANE TLSA resource record for a certificate (or public key) that was issued
localy and may or may not be signed by a CA use the following command.
$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem

To create a DANE TLSA resource record for a CA signed certificate, which will be marked
as such use the following command.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \
--no-domain

The former is useful to add in your DNS entry even if your certificate is signed by a CA.
That way even users who do not trust your CA will be able to verify your certificate using
DANE.

In order to create a record for the CA signer of your certificate use the following.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \
--ca —--no-domain

To read a server’s DANE TLSA entry, use:
$ danetool --check www.example.com --proto tcp --port 443
To verify a server’s DANE TLSA entry, use:

$ danetool --check www.example.com --proto tcp --port 443 --load-certificate chain.j

4.3 Shared-key and anonymous authentication

In addition to certificate authentication, the TLS protocol may be used with password,
shared-key and anonymous authentication methods. The rest of this chapter discusses
details of these methods.

4.3.1 SRP authentication

4.3.1.1 Authentication using SRP

GnuTLS supports authentication via the Secure Remote Password or SRP protocol (see
[RFC2945, TOMSRP] for a description). The SRP key exchange is an extension to the
TLS protocol, and it provides an authenticated with a password key exchange. The peers
can be identified using a single password, or there can be combinations where the client is
authenticated using SRP and the server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP is not susceptible to off-line dictionary attacks. Moreover, SRP does
not require the server to hold the user’s password. This kind of protection is similar to the

Chapter 4: Authentication methods 72

one used traditionally in the UNIX /etc/passwd file, where the contents of this file did not
cause harm to the system security if they were revealed. The SRP needs instead of the plain
password something called a verifier, which is calculated using the user’s password, and if
stolen cannot be used to impersonate the user.

Typical conventions in SRP are a password file, called tpasswd that holds the SRP verifiers
(encoded passwords) and another file, tpasswd.conf, which holds the allowed SRP pa-
rameters. The included in GnuTLS helper follow those conventions. The srptool program,
discussed in the next section is a tool to manipulate the SRP parameters.

The implementation in GnuTLS is based on [TLSSRP]. The supported key exchange meth-
ods are shown below.

SRP: Authentication using the SRP protocol.

SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using a
certificate with DSA parameters.

SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using a
certificate with RSA parameters.

int gnutls_srp_verifier (const char * username, const char * [Function]
password, const gnutls_datum_t * salt, const gnutls_datum_t * generator,
const gnutls_datum_t * prime, gnutls_datum_t * res)
username: is the user’s name

password: is the user’s password

salt: should be some randomly generated bytes
generator: is the generator of the group

prime: is the group’s prime

res: where the verifier will be stored.

This function will create an SRP verifier, as specified in RFC2945. The prime and
generator should be one of the static parameters defined in gnutls/gnutls.h or may
be generated.

The verifier will be allocated with gnutls_malloc () and will be stored in res using
binary format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

int [gnutls_srp_base64_encode_alloc], page 337 (const gnutls_datum_t * data,
gnutls_datum_t * result)

int [gnutls_srp_base64_decode_alloc], page 336 (const gnutls_datum_t *
b64_data, gnutls_datum_t * result)

4.3.1.2 Invoking srptool

Simple program that emulates the programs in the Stanford SRP (Secure Remote Pass-
word) libraries using GnuTLS. It is intended for use in places where you don’t expect SRP
authentication to be the used for system users.

In brief, to use SRP you need to create two files. These are the password file that holds
the users and the verifiers associated with them and the configuration file to hold the group
parameters (called tpasswd.conf).

Chapter 4: Authentication methods 73

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the srptool program. This software is released under the GNU General
Public License, version 3 or later.

srptool help/usage (--help)

This is the automatically generated usage text for srptool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

srptool - GnuTLS SRP tool - Ver. QVERSIONG@

USAGE: srptool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, —--debug=num Enable debugging.
- it must be in the range:
0 to 9999

-i, --index=num specify the index of the group parameters in tpasswd.conf to
-u, —--username=str specify a username
-p, ——passwd=str specify a password file.
-s, ——salt=num specify salt size.

--verify just verify the password.
-v, —--passwd-conf=str specify a password conf file.

--create-conf=str Generate a password configuration file.
-v, —--version[=arg] Output version information and exit
-h, --help Display extended usage information and exit
-1, --more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Simple program that emulates the programs in the Stanford SRP (Secure
Remote Password) libraries using GnuTLS. It is intended for use in places
where you don’t expect SRP authentication to be the used for system users.

In brief, to use SRP you need to create two files. These are the password
file that holds the users and the verifiers associated with them and the
configuration file to hold the group parameters (called tpasswd.conf).

Please send bug reports to: <bug-gnutls@gnu.org>

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

Chapter 4: Authentication methods 74

verify option

This is the “just verify the password.” option. Verifies the password provided against the
password file.

passwd-conf option (-v)

This is the “specify a password conf file.” option. This option takes an argument string.
Specify a filename or a PKCS #11 URL to read the CAs from.

create-conf option

This is the “generate a password configuration file.” option. This option takes an argument
string. This generates a password configuration file (tpasswd.conf) containing the required
for TLS parameters.

srptool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

srptool See Also
gnutls-cli-debug (1), gnutls-serv (1), srptool (1), psktool (1), certtool (1)

srptool Examples

To create tpasswd.conf which holds the g and n values for SRP protocol (generator and a
large prime), run:

$ srptool --create-conf /etc/tpasswd.conf

This command will create /etc/tpasswd and will add user "test’ (you will also be prompted
for a password). Verifiers are stored by default in the way libsrp expects.

$ srptool --passwd /etc/tpasswd --passwd-conf /etc/tpasswd.conf -u test

This command will check against a password. If the password matches the one in
/etc/tpasswd you will get an ok.

$ srptool --passwd /etc/tpasswd --passwd\-conf /etc/tpasswd.conf --verify -u test

4.3.2 PSK authentication

4.3.2.1 Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and
binary keys. This protocol avoids making use of public key infrastructure and expensive
calculations, thus it is suitable for constraint clients.

The implementation in GnuTLS is based on [TLSPSK]. The supported PSK key exchange
methods are:

Chapter 4: Authentication methods 75

PSK: Authentication using the PSK protocol.

DHE-PSK: Authentication using the PSK protocol and Diffie-Hellman key exchange. This
method offers perfect forward secrecy.

ECDHE-PSK:
Authentication using the PSK protocol and Elliptic curve Diffie-Hellman key
exchange. This method offers perfect forward secrecy.

Helper functions to generate and maintain PSK keys are also included in GnuTLS.

int [gnutls_key_generate], page 307 (gnutls_datum_t * key, unsigned int
key_size)

int [gnutls_hex_encode], page 306 (const gnutls_datum_t * data, char * result,
size_t * result_size)

int [gnutls_hex_decode], page 306 (const gnutls_datum_t * hex_data, void *
result, size_t * result_size)

4.3.2.2 Invoking psktool

Program that generates random keys for use with TLS-PSK. The keys are stored in hex-
adecimal format in a key file.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the psktool program. This software is released under the GNU General
Public License, version 3 or later.

psktool help/usage (--help)

This is the automatically generated usage text for psktool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.

The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

psktool - GnuTLS PSK tool

Usage: psktool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, —--debug=num Enable debugging.
- it must be in the range:
0 to 9999
-s, ——keysize=num specify the key size in bytes
- it must be in the range:
0 to 512
-u, —-username=str specify a username
-p, ——passwd=str specify a password file.
-v, --version[=arg] output version information and exit
-h, --help display extended usage information and exit
-1, —-more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

Chapter 4: Authentication methods 76

hyphen and the flag character.

Program that generates random keys for use with TLS-PSK. The keys are
stored in hexadecimal format in a key file.

Please send bug reports to: <bug-gnutls@gnu.org>
debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

psktool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

psktool See Also
gnutls-cli-debug (1), gnutls-serv (1), srptool (1), certtool (1)

psktool Examples

To add a user 'psk_identity’ in passwd.psk for use with GnuTLS run:
$./psktool -u psk_identity -p passwd.psk
Generating a random key for user ’psk_identity’
Key stored to passwd.psk
$ cat psks.txt
psk_identity:88£3824b3e5659£52d00e959bacab954b6540344
$

This command will create passwd.psk if it does not exist and will add user ’psk_identity’
(you will also be prompted for a password).

4.3.3 Anonymous authentication

The anonymous key exchange offers encryption without any indication of the peer’s identity.
This kind of authentication is vulnerable to a man in the middle attack, but can be used
even if there is no prior communication or shared trusted parties with the peer. Moreover
it is useful when complete anonymity is required. Unless in one of the above cases, do not
use anonymous authentication.

The available key exchange algorithms for anonymous authentication are shown below, but
note that few public servers support them. They typically have to be explicitly enabled.
ANON_DH: This algorithm exchanges Diffie-Hellman parameters.

ANON_ECDH:
This algorithm exchanges elliptic curve Diffie-Hellman parameters. It is more
efficient than ANON_DH on equivalent security levels.

Chapter 4: Authentication methods 7

4.4 Selecting an appropriate authentication method

This section provides some guidance on how to use the available authentication methods in
GnuTLS in various scenarios.

4.4.1 Two peers with an out-of-band channel

Let’s consider two peers need to communicate over an untrusted channel (the Internet),
but have an out-of-band channel available. The latter channel is considered safe from
eavesdropping and message modification and thus can be used for an initial bootstrapping
of the protocol. The options available are:

e Pre-shared keys (see Section 4.3.2 [PSK authentication], page 74). The server and a
client communicate a shared randomly generated key over the trusted channel and use
it to negotiate further sessions over the untrusted channel.

e Passwords (see Section 4.3.1 [SRP authentication], page 71). The client communicates
to the server his username and password of choice and uses it to negotiate further
sessions over the untrusted channel.

e Public keys (see Section 4.1 [Certificate authentication], page 18). The client and the
server exchange their public keys (or fingerprints of them) over the trusted channel. On
future sessions over the untrusted channel they verify the key being the same (similar to
Section 4.1.3.1 [Verifying a certificate using trust on first use authentication|, page 35).

Provided that the out-of-band channel is trusted all of the above provide a similar level
of protection. An out-of-band channel may be the initial bootstrapping of a user’s PC
in a corporate environment, in-person communication, communication over an alternative
network (e.g. the phone network), etc.

4.4.2 Two peers without an out-of-band channel

When an out-of-band channel is not available a peer cannot be reliably authenticated. What
can be done, however, is to allow some form of registration of users connecting for the first
time and ensure that their keys remain the same after that initial connection. This is termed
key continuity or trust on first use (TOFU).

The available option is to use public key authentication (see Section 4.1 [Certificate authen-
tication], page 18). The client and the server store each other’s public keys (or fingerprints
of them) and associate them with their identity. On future sessions over the untrusted chan-
nel they verify the keys being the same (see Section 4.1.3.1 [Verifying a certificate using
trust on first use authentication], page 35).

To mitigate the uncertainty of the information exchanged in the first connection other
channels over the Internet may be used, e.g., DNSSEC (see Section 4.1.3.2 [Verifying a
certificate using DANE], page 35).

4.4.3 Two peers and a trusted third party

When a trusted third party is available (or a certificate authority) the most suitable option is
to use certificate authentication (see Section 4.1 [Certificate authentication|, page 18). The
client and the server obtain certificates that associate their identity and public keys using a
digital signature by the trusted party and use them to on the subsequent communications
with each other. Each party verifies the peer’s certificate using the trusted third party’s

Chapter 4: Authentication methods 78

signature. The parameters of the third party’s signature are present in its certificate which
must be available to all communicating parties.

While the above is the typical authentication method for servers in the Internet by using the
commercial CAs, the users that act as clients in the protocol rarely possess such certificates.
In that case a hybrid method can be used where the server is authenticated by the client
using the commercial CAs and the client is authenticated based on some information the
client provided over the initial server-authenticated channel. The available options are:

e Passwords (see Section 4.3.1 [SRP authentication|, page 71). The client communicates
to the server his username and password of choice on the initial server-authenticated
connection and uses it to negotiate further sessions. This is possible because the SRP
protocol allows for the server to be authenticated using a certificate and the client using
the password.

e Public keys (see Section 4.1 [Certificate authentication], page 18). The client sends its
public key to the server (or a fingerprint of it) over the initial server-authenticated con-
nection. On future sessions the client verifies the server using the third party certificate
and the server verifies that the client’s public key remained the same (see Section 4.1.3.1
[Verifying a certificate using trust on first use authentication], page 35).

Chapter 5: Hardware security modules and abstract key types 79

5 Hardware security modules and abstract key
types

In several cases storing the long term cryptographic keys in a hard disk or even in memory
poses a significant risk. Once the system they are stored is compromised the keys must be
replaced as the secrecy of future sessions is no longer guarranteed. Moreover, past sessions
that were not protected by a perfect forward secrecy offering ciphersuite are also to be
assumed compromised.

If such threats need to be addressed, then it may be wise storing the keys in a security
module such as a smart card, an HSM or the TPM chip. Those modules ensure the pro-
tection of the cryptographic keys by only allowing operations on them and preventing their
extraction.

5.1 Abstract key types

Since there are many forms of a public or private keys supported by GnuTLS such as X.509,
OpenPGP, PKCS #11 or TPM it is desirable to allow common operations on them. For
these reasons the abstract gnutls_privkey_t and gnutls_pubkey_t were introduced in
gnutls/abstract.h header. Those types are initialized using a specific type of key and
then can be used to perform operations in an abstract way. For example in order to sign
an X.509 certificate with a key that resides in a token the following steps must be used.

#inlude <gnutls/abstract.h>

void sign_cert(gnutls_x509_crt_t to_be_signed)
{

gnutls_x509_crt_t ca_cert;

gnutls_privkey_t abs_key;

/* initialize the abstract key */
gnutls_privkey_init (&abs_key) ;

/* keys stored in tokens are identified by URLs */
gnutls_privkey_import_url(abs_key, key_url);

gnutls_x509_crt_init (&ca_cert);
gnutls_x509_crt_import_pkcsll_url(&ca_cert, cert_url);

/* sign the certificate to be signed */
gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, abs_key,
GNUTLS_DIG_SHA256, 0);
}

5.1.1 Public keys

An abstract gnutls_pubkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_crt_t, or through an ASN.1
encoding of the X.509 SubjectPublicKeyInfo sequence.

Chapter 5: Hardware security modules and abstract key types 80

int [gnutls_pubkey_import_x509], page 499 (gnutls_pubkey_t key,
gnutls_x509_crt_t crt, unsigned int flags)

int [gnutls_pubkey_import_openpgpl, page 496 (gnutls_pubkey_t key,
gnutls_openpgp_crt_t crt, unsigned int flags)

int [gnutls_pubkey_import_pkcsll], page 497 (gnutls_pubkey_t key,
gnutls_pkcsll_obj_t obj, unsigned int flags)

int [gnutls_pubkey_import_url], page 499 (gnutls_pubkey_t key, const char *
url, unsigned int flags)

int [gnutls_pubkey_import_privkey], page 498 (gnutls_pubkey_t key,
gnutls_privkey_t pkey, unsigned int usage, unsigned int flags)

int [gnutls_pubkey_import], page 495 (gnutls_pubkey_t key, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_pubkey_export], page 491 (gnutls_pubkey_t key,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

int gnutls_pubkey_export2 (gnutls_pubkey_t key, [Function]
gnutls_x509_crt_fmt_t format, gnutls_datum_t * out)
key: Holds the certificate
format: the format of output params. One of PEM or DER.
out: will contain a certificate PEM or DER encoded

This function will export the public key to DER or PEM format. The contents of the
exported data is the SubjectPublicKeyInfo X.509 structure.

The output buffer will be allocated using gnutls_malloc() .

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".
Returns: In case of failure a negative error code will be returned, and 0 on success.
Since: 3.1.3

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below.

int [gnutls_pubkey_import_x509_raw], page 500 (gnutls_pubkey_t pkey, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, unsigned int flags)

int [gnutls_pubkey_import_openpgp_raw], page 497 (gnutls_pubkey_t pkey, const
gnutls_datum_t * data, gnutls_openpgp_crt_fmt_t format, const
gnutls_openpgp_keyid_t keyid, unsigned int flags)

An important function is [gnutls_pubkey_import_url], page 499 which will import public
keys from URLs that identify objects stored in tokens (see Section 5.2 [Smart cards and
HSMs]|, page 85 and Section 5.3 [Trusted Platform Module]|, page 96). A function to check
for a supported by GnuTLS URL is [gnutls_url_is_supported], page 348.

int gnutls_url_is_supported (const char® url) [Function]
url: A PKCS 11 url

Check whether url is supported. Depending on the system libraries GnuTLS may
support pkesll or tpmkey URLs.

Returns: return non-zero if the given URL is supported, and zero if it is not known.
Since: 3.1.0

Chapter 5: Hardware security modules and abstract key types 81

Additional functions are available that will return information over a public key, such as
a unique key ID, as well as a function that given a public key fingerprint would provide a
memorable sketch.

Note that [gnutls_pubkey_get_key_id|, page 492 calculates a SHA1 digest of the public key
as a DER-formatted, subjectPublicKeyInfo object. Other implementations use different
approaches, e.g., some use the “common method” described in section 4.2.1.2 of [RFC5280)
which calculates a digest on a part of the subjectPublicKeyInfo object.

int [gnutls_pubkey_get_pk_algorithm], page 493 (gnutls_pubkey_t key, unsigned
int * bits)

int [gnutls_pubkey_get_preferred_hash_algorithm], page 494 (gnutls_pubkey_t
key, gnutls_digest_algorithm_t * hash, unsigned int * mand)

int [gnutls_pubkey_get_key_id], page 492 (gnutls_pubkey_t key, unsigned int
flags, unsigned char * output_data, size_t * output_data_size)

int [gnutls_random_art], page 322 (gnutls_random_art_t type, const char*
key_type, unsigned int key_size, void * fpr, size_t fpr_size, gnutls_datum_t*
art)

To export the key-specific parameters, or obtain a unique key ID the following functions
are provided.

int [gnutls_pubkey_get_pk_rsa_raw], page 494 (gnutls_pubkey_t key,
gnutls_datum_t * m, gnutls_datum_t * e)

int [gnutls_pubkey_get_pk_dsa_raw], page 493 (gnutls_pubkey_t key,
gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * g, gnutls_datum_t * y)
int [gnutls_pubkey_get_pk_ecc_raw], page 493 (gnutls_pubkey_t key,
gnutls_ecc_curve_t * curve, gnutls_datum_t * x, gnutls_datum_t * y)

int [gnutls_pubkey_get_pk_ecc_x962], page 494 (gnutls_pubkey_t key,
gnutls_datum_t* parameters, gnutls_datum_t * ecpoint)

5.1.2 Private keys

An abstract gnutls_privkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_privkey_t, but unlike public
keys it cannot be exported. That is to allow abstraction over keys stored in hardware that
makes available only operations.

int [gnutls_privkey_import_x509], page 488 (gnutls_privkey_t pkey,
gnutls_x509_privkey_t key, unsigned int flags)

int [gnutls_privkey_import_openpgpl, page 485 (gnutls_privkey_t pkey,
gnutls_openpgp_privkey_t key, unsigned int flags)

int [gnutls_privkey_import_pkcsll], page 486 (gnutls_privkey_t pkey,
gnutls_pkcsll_privkey_t key, unsigned int flags)

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below. Again, as with public keys, private keys can be imported from a hardware
module using URLs.

Chapter 5: Hardware security modules and abstract key types 82

int [gnutls_privkey_import_x509_raw], page 488 (gnutls_privkey_t pkey, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char* password,
unsigned int flags)

int [gnutls_privkey_import_openpgp_raw], page 485 (gnutls_privkey_t pkey,
const gnutls_datum_t * data, gnutls_openpgp_crt_fmt_t format, const
gnutls_openpgp_keyid_t keyid, const char* password)

int gnutls_privkey_import_url (gnutls_privkey_t key, const char * [Function]
url, unsigned int flags)
key: A key of type gnutls_privkey_t
url: A PKCS 11 url
flags: should be zero
This function will import a PKCS11 or TPM URL as a private key. The supported
URL types can be checked using gnutls_url_is_supported() .
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_privkey_get_pk_algorithm], page 484 (gnutls_privkey_t key,
unsigned int * bits)

gnutls_privkey_type_t [gnutls_privkey_get_typel, page 484 (gnutls_privkey_t
key)

int [gnutls_privkey_status], page 490 (gnutls_privkey_t key)

In order to support cryptographic operations using an external API, the following function
is provided. This allows for a simple extensibility API without resorting to PKCS #11.

int gnutls_privkey_import_ext2 (gnutls_privkey_t pkey, [Function]

gnutls_pk_algorithm_t pk, void* userdata, gnutls_privkey_sign_func
sign_func, gnutls_privkey_decrypt_func decrypt_func,
gnutls_privkey_deinit_func deinit_func, unsigned int flags)

pkey: The private key

pk: The public key algorithm

userdata: private data to be provided to the callbacks

sign_func: callback for signature operations

decrypt_func: callback for decryption operations

deinit_func: a deinitialization function

flags: Flags for the import

This function will associate the given callbacks with the gnutls_privkey_t structure.

At least one of the two callbacks must be non-null. If a deinitialization function is

provided then flags is assumed to contain GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE .

Note that the signing function is supposed to "raw" sign data, i.e., without any

hashing or preprocessing.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

Since: 3.1

Chapter 5: Hardware security modules and abstract key types 83

5.1.3 Operations

The abstract key types can be used to access signing and signature verification operations
with the underlying keys.

int gnutls_pubkey_verify_data2 (gnutls_pubkey_t pubkey, [Function]
gnutls_sign_algorithm_t algo, unsigned int flags, const gnutls_datum_t *
data, const gnutls_datum_t * signature)
pubkey: Holds the public key

algo: The signature algorithm used

flags: Zero or on of gnutls_pubkey_flags_t
data: holds the signed data

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

int gnutls_pubkey_verify_hash2 (gnutls_pubkey.t key, [Function]
gnutls_sign_algorithm_t algo, unsigned int flags, const gnutls_datum_t *
hash, const gnutls_datum_t * signature)
key: Holds the public key

algo: The signature algorithm used

flags: Zero or on of gnutls_pubkey_flags_t
hash: holds the hash digest to be verified
signature: contains the signature

This function will verify the given signed digest, using the parameters from the public
key.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

int gnutls_pubkey_encrypt_data (gnutls_pubkey_t key, unsigned int [Function]
flags, const gnutls_datum_t * plaintext, gnutls_.datum_t * ciphertext)
key: Holds the public key

flags: should be 0 for now

plaintext: The data to be encrypted

ciphertext: contains the encrypted data

This function will encrypt the given data, using the public key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

Chapter 5: Hardware security modules and abstract key types 84

int gnutls_privkey_sign_data (gnutls_privkey_t signer, [Function]
gnutls_digest_algorithm_t hash, unsigned int flags, const gnutls_datum_t *
data, gnutls_datum_t * signature)
signer: Holds the key

hash: should be a digest algorithm

flags: Zero or on of gnutls_privkey_flags_t

data: holds the data to be signed

signature: will contain the signature allocate with gnutls_malloc()

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only the SHA
family for the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_privkey_sign_hash (gnutls_privkey_t signer, [Function]

gnutls_digest_algorithm_t hash_algo, unsigned int flags, const
gnutls_datum_t * hash_data, gnutls_datum_t * signature)
signer: Holds the signer’s key

hash_algo: The hash algorithm used

flags: Zero or one of gnutls_privkey_flags_t
hash_data: holds the data to be signed
signature: will contain newly allocated signature

This function will sign the given hashed data using a signature algorithm supported by
the private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-XXX for
the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Note that if GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA flag is specified this function will
ignore hash_algo and perform a raw PKCS1 signature.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

int gnutls_privkey_decrypt_data (gnutls_privkey_t key, unsigned [Function]
int flags, const gnutls_datum_t * ciphertext, gnutls_datum_t *
plaintext)
key: Holds the key

flags: zero for now

Chapter 5: Hardware security modules and abstract key types 85

ciphertext: holds the data to be decrypted
plaintext: will contain the decrypted data, allocated with gnutls_malloc()

This function will decrypt the given data using the algorithm supported by the private
key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Signing existing structures, such as certificates, CRLs, or certificate requests, as well as
associating public keys with structures is also possible using the key abstractions.

int gnutls_x509_crq_set_pubkey (gnutls_x509_crq-t crq, [Function]
gnutls_pubkey_t key)
crq: should contain a gnutls_x509_crq_t structure

key: holds a public key
This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_x509_crt_set_pubkey (gnutls_x509_crt_t crt, [Function]

gnutls_pubkey_t key)
crt: should contain a gnutls_x509_crt_t structure

key: holds a public key
This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

int [gnutls_x509_crt_privkey_sign], page 504 (gnutls_x509_crt_t crt,
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)

int [gnutls_x509_crl_privkey_sign], page 503 (gnutls_x509_crl_t crl,
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)

int [gnutls_x509_crq_privkey_sign], page 503 (gnutls_x509_crq_t crq,
gnutls_privkey_t key, gnutls_digest_algorithm_t dig, unsigned int flags)

5.2 Smart cards and HSMs

In this section we present the smart-card and hardware security module (HSM) support in
GnuTLS using PKCS #11 [PKCS11]. Hardware security modules and smart cards provide
a way to store private keys and perform operations on them without exposing them. This
decouples cryptographic keys from the applications that use them and provide an additional
security layer against cryptographic key extraction. Since this can also be achieved in

Chapter 5: Hardware security modules and abstract key types 86

software components such as in Gnome keyring, we will use the term security module to
describe any cryptographic key separation subsystem.

PKCS #11 is plugin API allowing applications to access cryptographic operations on a
security module, as well as to objects residing on it. PKCS #11 modules exist for hardware
tokens such as smart cards!, cryptographic tokens, as well as for software modules like
Gnome Keyring. The objects residing on a security module may be certificates, public keys,
private keys or secret keys. Of those certificates and public/private key pairs can be used
with GnuTLS. PKCS #11’s main advantage is that it allows operations on private key
objects such as decryption and signing without exposing the key. In GnuTLS the PKCS
#11 functionality is available in gnutls/pkcsi1.h.

Moreover PKCS #11 can be (ab)used to allow all applications in the same operating system
to access shared cryptographic keys and certificates in a uniform way, as in Figure 5.1. That
way applications could load their trusted certificate list, as well as user certificates from a
common PKCS #11 module. Such a provider exists in the Gnome system, being the Gnome
Keyring.

Trusted Platform
Module

Gnome Keyring
Daemon

User
Application

Other crypto
package

Figure 5.1: PKCS #11 module usage.

Smart card

PKCS #11
Provider

5.2.1 Initialization

To allow all the GnuTLS applications to access PKCS #11 tokens you can use a con-
figuration per module, stored in /etc/pkcsil/modules/. These are the configuration
files of pl1-kit>. For example a file that will load the OpenSC module, could be named
/etc/pkcsll/modules/opensc and contain the following:

module: /usr/lib/opensc-pkcsll.so

If you use this file, then there is no need for other initialization in GnuTLS, except for the
PIN and token functions (see next section). In several cases, however, it is desirable to limit
badly behaving modules (e.g., modules that add an unacceptable delay on initialization) to
single applications. That can be done using the “enable-in:” option followed by the base
name of applications that this module should be used.

1 http://www.opensc-project.org
2 http://pll-glue.freedesktop.org/

http://www.opensc-project.org
http://p11-glue.freedesktop.org/

Chapter 5: Hardware security modules and abstract key types 87

In all cases, you may also manually initialize the PKCS #11 subsystem if the default settings
are not desirable.

int gnutls_pkcs1l_init (unsigned int flags, const char * [Function]
deprecated_config _file)
flags: GNUTLS_PKCS11_FLAG_MANUAL or GNUTLS_PKCS11_FLAG_AUTO

deprecated_config_file: either NULL or the location of a deprecated configuration file

This function will initialize the PKCS 11 subsystem in gnutls. It will read configu-
ration files if GNUTLS_PKCS11_FLAG_AUTO is used or allow you to independently load
PKCS 11 modules using gnutls_pkcsil_add_provider () if GNUTLS_PKCS11_FLAG_
MANUAL is specified.

Normally you don’t need to call this function since it is being called by gnutls_
global_init() using the GNUTLS_PKCS11_FLAG_AUTO . If other option is required
then it must be called before it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Note that PKCS #11 modules must be reinitialized on the child processes after a fork.
GnuTLS provides [gnutls_pkesl1_reinit|, page 475 to be called for this purpose.

int gnutls_pkcsll_reinit (void) [Function]
This function will reinitialize the PKCS 11 subsystem in gnutls. This is required by
PKCS 11 when an application uses fork() . The reinitialization function must be
called on the child.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

5.2.2 Accessing objects that require a PIN

Objects stored in token such as a private keys are typically protected from access by a PIN
or password. This PIN may be required to either read the object (if allowed) or to perform
operations with it. To allow obtaining the PIN when accessing a protected object, as well
as probe the user to insert the token the following functions allow to set a callback.

void [gnutls_pkcsll_set_token_function], page 475
(gnutls_pkcs1l_token_callback_t fn, void * userdata)

void [gnutls_pkcsll_set_pin_function], page 475 (gnutls_pin_callback_t fn,
void * userdata)

int [gnutls_pkcsll_add_provider], page 466 (const char * name, const char *
params)

gnutls_pin_callback_t [gnutls_pkcsll_get_pin_function], page 468 (void **
userdata)

The callback is of type gnutls_pin_callback_t and will have as input the provided user-
data, the PIN attempt number, a URL describing the token, a label describing the object
and flags. The PIN must be at most of pin_max size and must be copied to pin variable.
The function must return 0 on success or a negative error code otherwise.

Chapter 5: Hardware security modules and abstract key types 88

typedef int (*gnutls_pin_callback_t) (void *userdata, int attempt,
const char *token_url,
const char *token_label,
unsigned int flags,
char *pin, size_t pin_max);

The flags are of gnutls_pin_flag_t type and are explained below.

GNUTLS_PIN_USER
The PIN for the user.

GNUTLS_PIN_SO
The PIN for the security officer (admin).

GNUTLS_PIN_FINAL_TRY
This is the final try before blocking.

GNUTLS_PIN_COUNT_LOW
Few tries remain before token blocks.

GNUTLS_PIN_CONTEXT_SPECIFIC
The PIN is for a specific action and key like signing.

GNUTLS_PIN_WRONG
Last given PIN was not correct.

Figure 5.2: The gnutls_pin_flag_t enumeration.

Note that due to limitations of PKCS #11 there are issues when multiple libraries are
sharing a module. To avoid this problem GnuTLS uses p11-kit that provides a middleware
to control access to resources over the multiple users.

To avoid conflicts with multiple registered callbacks for PIN functions,
[gnutls_pkesl1_get_pin_function|, page 468 may be used to check for any previ-
ously set functions. In addition context specific PIN functions are allowed, e.g., by using
functions below.

void [gnutls_certificate_set_pin_function], page 278
(gnutls_certificate_credentials_t cred, gnutls_pin_callback_t fn, void *
userdata)

void [gnutls_pubkey_set_pin_function], page 501 (gnutls_pubkey_t key,
gnutls_pin_callback_t fn, void * userdata)

void [gnutls_privkey_set_pin_function], page 489 (gnutls_privkey_t key,
gnutls_pin_callback_t fn, void * userdata)

void [gnutls_pkcsll_obj_set_pin_function], page 472 (gnutls_pkcsll_obj_t
obj, gnutls_pin_callback_t fn, void * userdata)

void [gnutls_x509_crt_set_pin_function], page 408 (gnutls_x509_crt_t crt,
gnutls_pin_callback_t fn, void * userdata)

5.2.3 Reading objects

All PKCS #11 objects are referenced by GnuTLS functions by URLs as described
in [PKCS11URI]. This allows for a consistent naming of objects across systems and

Chapter 5: Hardware security modules and abstract key types 89

applications in the same system. For example a public key on a smart card may be
referenced as:

pkcsll:token=Nikos;serial=307521161601031;model=PKCS%2315; \
manufacturer=EnterSafe;object=testl;objecttype=public;\
1d=32£153£3e37990b08624141077cabdec2d15faed

while the smart card itself can be referenced as:
pkcs1l:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe

Objects stored in a PKCS #11 token can be extracted if they are not marked as sensitive.
Usually only private keys are marked as sensitive and cannot be extracted, while certificates
and other data can be retrieved. The functions that can be used to access objects are shown
below.

int [gnutls_pkcsll_obj_import_url], page 470 (gnutls_pkcsll_obj_t obj, const
char * url, unsigned int flags)

int [gnutls_pkcsll_obj_export_url], page 470 (gnutls_pkcsll_obj_t obj,
gnutls_pkcsll_url_type_t detailed, char ** url)

int gnutls_pkcsll_obj_get_info (gnutls_pkcsll_obj_-t crt, [Function]
gnutls_pkecsl1_obj_info_t itype, void * output, size_t * output_size)
crt: should contain a gnutls_pkcs1l_obj_t structure

itype: Denotes the type of information requested
output: where output will be stored

output_size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS11 certificate such as the label,
id as well as token information where the key is stored. When output is text it returns
null terminated string although output_size contains the size of the actual data only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

int [gnutls_x509_crt_import_pkcsll], page 477 (gnutls_x509_crt_t crt,
gnutls_pkcsll_obj_t pkcsll_crt)

int [gnutls_x509_crt_import_pkcsll_url], page 477 (gnutls_x509_crt_t crt,
const char * url, unsigned int flags)

int [gnutls_x509_crt_list_import_pkcsil], page 478 (gnutls_x509_crt_t *
certs, unsigned int cert_max, gnutls_pkcsll_obj_t * const objs, unsigned int
flags)

Properties of the physical token can also be accessed and altered with GnuTLS. For example
data in a token can be erased (initialized), PIN can be altered, etc.

Chapter 5: Hardware security modules and abstract key types 90

int [gnutls_pkcsll_token_init], page 476 (const char * token_url, const char *
so_pin, const char * label)

int [gnutls_pkcsll_token_get_url], page 476 (unsigned int seq,
gnutls_pkcsil_url_type_t detailed, char ** url)

int [gnutls_pkcsll_token_get_info], page 475 (const char * url,
gnutls_pkcsll_token_info_t ttype, void * output, size_t * output_size)

int [gnutls_pkcsll_token_get_flags], page 475 (const char * url, unsigned int
*x flags)

int [gnutls_pkcsll_token_set_pin], page 477 (const char * token_url, const
char * oldpin, const char * newpin, unsigned int flags)

The following examples demonstrate the usage of the API. The first example will list all
available PKCS #11 tokens in a system and the latter will list all certificates in a token
that have a corresponding private key.

int 1i;

charx*x url;

gnutls_global_init();

for (i=0;;i++)
{
ret = gnutls_pkcsll_token_get_url(i, &url);
if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)
break;

if (ret < 0)
exit(1);

fprintf(stdout, "Token[%d]: URL: %s\n", i, url);
gnutls_free(url);
}
gnutls_global_deinit();

/* This example code is placed in the public domain. */

#include <config.h>
#include <gnutls/gnutls.h>
#include <gnutls/pkcsil.h>
#include <stdio.h>
#include <stdlib.h>

#define URL "pkcs11:URL"

int

main (int argc, char*x argv)

{
gnutls_pkcsll_obj_t *obj_list;
gnutls_x509_crt_t =xcrt;

Chapter 5: Hardware security modules and abstract key types 91

unsigned int obj_list_size = O;
gnutls_datum_t cinfo;

int ret;

unsigned int 1i;

obj_list_size = O;
ret = gnutls_pkcsll_obj_list_import_url (NULL, &obj_list_size, URL,
GNUTLS_PKCS11_0BJ_ATTR_CRT_WITH_PRIVKEY,
0);
if (ret < 0 && ret !'= GNUTLS_E_SHORT_MEMORY_BUFFER)
return -1;

/* no error checking from now on */
obj_list = malloc (sizeof (*obj_list) * obj_list_size);

gnutls_pkcsll_obj_list_import_url (obj_list, &obj_list_size, URL,
GNUTLS_PKCS11_0BJ_ATTR_CRT_WITH_PRIVKEY,
0);

/* now all certificates are in obj_list */
for (i = 0; i < obj_list_size; i++)

{
gnutls_x509_crt_init (&xcrt);
gnutls_x509_crt_import_pkcsll (xcrt, obj_list[il);
gnutls_x509_crt_print (xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo);
fprintf (stdout, "cert[/d]:\n %s\n\n", i, cinfo.data);

gnutls_free (cinfo.data);
gnutls_x509_crt_deinit (xcrt);

return O;

¥

5.2.4 Writing objects

With GnuTLS you can copy existing private keys and certificates to a token. Note that
when copying private keys it is recommended to mark them as sensitive using the GNUTLS_
PKCS11_0BJ_FLAG_MARK_SENSITIVE to prevent its extraction. An object can be marked
as private using the flag GNUTLS_PKCS11_0BJ_FLAG_MARK_PRIVATE, to require PIN to be
entered before accessing the object (for operations or otherwise).

Chapter 5: Hardware security modules and abstract key types 92

int gnutls_pkcsll_copy_x509_privkey (const char * token_url, [Function]
gnutls_x509_privkey_t key, const char * label, unsigned int key_usage,
unsigned int flags)
token_url: A PKCS 11 URL specifying a token

key: A private key

label: A name to be used for the stored data
key_usage: One of GNUTLS_KEY_*

flags: One of GNUTLS_PKCS11_OBJ_* flags

This function will copy a private key into a PKCS 11 token specified by a URL. It
is highly recommended flags to contain GNUTLS_PKCS11_0BJ_FLAG_MARK_SENSITIVE
unless there is a strong reason not to.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_pkcsll_copy_x509_crt (const char * token_url, [Function]

gnutls_x509_crt_t crt, const char * label, unsigned int flags)
token_url: A PKCS 11 URL specifying a token

crt: A certificate
label: A name to be used for the stored data
flags: One of GNUTLS_PKCS11_OBJ_FLAG_*

This function will copy a certificate into a PKCS 11 token specified by a URL. The
certificate can be marked as trusted or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

int gnutls_pkcsll_delete_url (const char * object_url, unsigned [Function]
int flags)
object_url: The URL of the object to delete.

flags: One of GNUTLS_PKCS11_OBJ_* flags

This function will delete objects matching the given URL. Note that not all tokens
support the delete operation.

Returns: On success, the number of objects deleted is returned, otherwise a negative
error value.

Since: 2.12.0

5.2.5 Using a PKCS #11 token with TLS

It is possible to use a PKCS #11 token to a TLS session, as shown in [ex:pkesll-client],
page 169. In addition the following functions can be used to load PKCS #11 key and
certificates by specifying a PKCS #11 URL instead of a filename.

Chapter 5: Hardware security modules and abstract key types 93

int [gnutls_certificate_set_x509_trust_file], page 285
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_key_file2], page 282
(gnutls_certificate_credentials_t res, const char * certfile, const char *
keyfile, gnutls_x509_crt_fmt_t type, const char* pass, unsigned int flags)

int gnutls_certificate_set_x509_system_trust [Function]
(gnutls_certificate_credentials_t cred)
cred: is a gnutls_certificate_credentials_t structure.

This function adds the system’s default trusted CAs in order to verify client or server
certificates.

In the case the system is currently unsupported GNUTLS_E_UNIMPLEMENTED_FEATURE
is returned.

Returns: the number of certificates processed or a negative error code on error.
Since: 3.0

5.2.6 Invoking plltool

Program that allows handling data from PKCS #11 smart cards and security modules.
To use PKCS #11 tokens with gnutls the configuration file /etc/gnutls/pkesll.conf has to
exist and contain a number of lines of the form "load=/usr/lib/opensc-pkes11.so’.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the plitool program. This software is released under the GNU General
Public License, version 3 or later.

plltool help/usage (--help)
This is the automatically generated usage text for plltool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

plitool - GnuTLS PKCS #11 tool

Usage: plltool [-<flag> [<val>] | --<name>[{=| }<val>]]... [url]
-d, --debug=num Enable debugging.
- it must be in the range:
0 to 9999
--outfile=str Output file
--list-tokens List all available tokens
—--export Export the object specified by the URL
--list-mechanisms List all available mechanisms in a token
--list-all List all available objects in a token
--list-all-certs List all available certificates in a token

--list-certs List all certificates that have an associated private key

Chapter 5: Hardware security modules and abstract key types 94

--list-all-privkeys List all available private keys in a token
--list-all-trusted List all available certificates marked as trusted
--initialize Initializes a PKCS #11 token
--write Writes the loaded objects to a PKCS #11 token
—--delete Deletes the objects matching the PKCS #11 URL
--generate-rsa Generate an RSA private-public key pair
--generate-dsa Generate an RSA private-public key pair
--generate-ecc Generate an RSA private-public key pair
--label=str Sets a label for the write operation
-—trusted Marks the object to be written as trusted

- disabled as ’--no-trusted’
--private Marks the object to be written as private

- disabled as ’--no-private’

- enabled by default
--login Force login to token

- disabled as ’--no-login’
--detailed-url Print detailed URLs

- disabled as ’--no-detailed-url’
--secret-key=str Provide a hex encoded secret key

--load-privkey=file Private key file to use
- file must pre-exist
--load-pubkey=file Public key file to use
- file must pre-exist
--load-certificate=file Certificate file to use
- file must pre-exist

-8, —--pkcs8 Use PKCS #8 format for private keys
--bits=num Specify the number of bits for key generate
--sec-param=str Specify the security level
--inder Use DER/RAW format for input

- disabled as ’--no-inder’
--inraw an alias for the ’inder’ option
--provider=file Specify the PKCS #11 provider library
- file must pre-exist

-v, —--version[=arg] output version information and exit

-h, --help display extended usage information and exit

-1, —-—more-help extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.
Operands and options may be intermixed. They will be reordered.

Program that allows handling data from PKCS #11 smart cards and security
modules.

To use PKCS #11 tokens with gnutls the configuration file
/etc/gnutls/pkcsll.conf has to exist and contain a number of lines of the
form ’load=/usr/lib/opensc-pkcsll.so’.

Chapter 5: Hardware security modules and abstract key types 95

Please send bug reports to: <bug-gnutls@gnu.org>

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

write option

This is the “writes the loaded objects to a pkes #11 token” option. It can be used to write
private keys, certificates or secret keys to a token.

generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair on the specified token.

generate-dsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair on the specified token.

generate-ecc option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair on the specified token.

private option
This is the “marks the object to be written as private” option.
This option has some usage constraints. It:

e is enabled by default.

The written object will require a PIN to be used.

sec-param option

This is the “specify the security level” option. This option takes an argument string
Security parameter. This is alternative to the bits option. Available options are [low,
legacy, normal, high, ultra].

inder option

This is the “use der/raw format for input” option. Use DER/RAW format for input cer-
tificates and private keys.

inraw option

This is an alias for the inder option, see [plltool inder|, page 95.

Chapter 5: Hardware security modules and abstract key types 96

provider option

This is the “specify the pkcs #11 provider library” option. This option takes an argument
file. This will override the default options in /etc/gnutls/pkesll.conf

plltool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

plltool See Also
certtool (1)

plltool Examples

To view all tokens in your system use:
$ plitool --list-tokens
To view all objects in a token use:
$ plitool --login --list-all "pkcsll:TOKEN-URL"
To store a private key and a certificate in a token run:
$ plitool --login --write "pkcsl1l:URL" --load-privkey key.pem \
--label "Mykey"

$ plitool --login --write "pkcsl1l:URL" --load-certificate cert.pem \
--label "Mykey"

Note that some tokens require the same label to be used for the certificate and its corre-
sponding private key.
To generate an RSA private key inside the token use:
$ plitool --login --generate-rsa --bits 1024 --label "MyNewKey" \
--outfile MyNewKey.pub "pkcs11:TOKEN-URL"

The bits parameter in the above example is explicitly set because some tokens only support
a limited number of bits. The output file is the corresponding public key. This key can be
used to general a certificate request with certtool.

certtool --generate-request --load-privkey "pkcs11l:KEY-URL" \
--load-pubkey MyNewKey.pub --outfile request.pem

5.3 Trusted Platform Module (TPM)

In this section we present the Trusted Platform Module (TPM) support in GnuTLS. Note
that this functionality is disabled by default because the trousers libraries GnuTLS de-
pends on for that functionality are under the Common Public License which is not compat-
ible with the GPL license.

There was a big hype when the TPM chip was introduced into computers. Briefly it is a
co-processor in your PC that allows it to perform calculations independently of the main

Chapter 5: Hardware security modules and abstract key types 97

processor. This has good and bad side-effects. In this section we focus on the good ones,
which are the fact that you can use it to perform cryptographic operations the similarly to a
PKCS #11 smart card. It allows for storing and using RSA keys but with slight differences
from a PKCS #11 module that require different handling. The basic operations supported,
and used by GnuTLS, are key generation and signing.

In GnuTLS the TPM functionality is available in gnutls/tpm.h.

5.3.1 Keys in TPM

The RSA keys in the TPM module may either be stored in a flash memory within TPM or
stored in a file in disk. In the former case the key can provide operations as with PKCS #11
and is identified by a URL. The URL is described in [TPMURI] and are of the following
form.

tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23adl;storage=user

It consists from a unique identifier of the key as well as the part of the flash memory the
key is stored at. The two options for the storage field are ‘user’ and ‘system’. The user keys
are typically only available to the generating user and the system keys to all users. The
stored in TPM keys are called registered keys.

The keys that are stored in the disk are exported from the TPM but in an encrypted form.
To access them two passwords are required. The first is the TPM Storage Root Key (SRK),
and the other is a key-specific password. Also those keys are identified by a URL of the
form:

tpmkey:file=/path/to/file

When objects require a PIN to be accessed the same callbacks as with PKCS #11 objects
are expected (see Section 5.2.2 [Accessing objects that require a PIN], page 87). Note that
the PIN function may be called multiple times to unlock the SRK and the specific key in
use. The label in the key function will then be set to ‘SRK’ when unlocking the SRK key,
or to ‘TPM’ when unlocking any other key.

5.3.2 Key generation

All keys used by the TPM must be generated by the TPM. This can be done using
[gnutls_tpm_privkey_generate|, page 479.

int gnutls_tpm_privkey_generate (gnutls_pk_algorithm_t pk, [Function]
unsigned int bits, const char* srk_password, const char* key_password,
gnutls_tpmkey_fmt_t format, gnutls_x509_crt_fmt_t pub_format,
gnutls_datum_t* privkey, gnutls_datum_t* pubkey, unsigned int flags)
pk: the public key algorithm

bits: the security bits

srk_password: a password to protect the exported key (optional)
key_password: the password for the TPM (optional)

format: the format of the private key

pub_format: the format of the public key

privkey: the generated key

pubkey: the corresponding public key (may be null)

Chapter 5: Hardware security modules and abstract key types 98

flags: should be a list of GNUTLS_TPM_* flags

This function will generate a private key in the TPM chip. The private key will be
generated within the chip and will be exported in a wrapped with TPM’s master key
form. Furthermore the wrapped key can be protected with the provided password .

Note that bits in TPM is quantized value. If the input value is not one of the allowed
values, then it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384.

Allowed flags are:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_tpm_get_registered], page 478 (gnutls_tpm_key_list_t * list)
void [gnutls_tpm_key_list_deinit], page 478 (gnutls_tpm_key_list_t list)
int [gnutls_tpm_key_list_get_url], page 479 (gnutls_tpm_key_list_t list,
unsigned int idx, char** url, unsigned int flags)

int gnutls_tpm_privkey_delete (const char* url, const char* [Function]
srk_password)
url: the URL describing the key

srk_password: a password for the SRK key

This function will unregister the private key from the TPM chip.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

5.3.3 Using keys

Importing keys

The TPM keys can be used directly by the abstract key types and do not require any
special structures. Moreover functions like [gnutls_certificate_set_x509_key_file2], page 282
can access TPM URLs.

int [gnutls_privkey_import_tpm_raw], page 486 (gnutls_privkey_t pkey, const
gnutls_datum_t * fdata, gnutls_tpmkey_fmt_t format, const char * srk_password,
const char * key_password, unsigned int flags)

int [gnutls_pubkey_import_tpm_raw], page 498 (gnutls_pubkey_t pkey, const
gnutls_datum_t * fdata, gnutls_tpmkey_fmt_t format, const char * srk_password,
unsigned int flags)

int gnutls_privkey_import_tpm_url (gnutls_privkey_t pkey, const [Function]
char* url, const char * srk_password, const char * key_password, unsigned
int flags)

pkey: The private key

url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
key_password: A password for the key (optional)

Chapter 5: Hardware security modules and abstract key types 99

flags: One of the GNUTLS_PRIVKEY _* flags

This function will import the given private key to the abstract gnutls_privkey_t
structure.

Note that unless GNUTLS_PRIVKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_
PASSWORD_ERROR is returned and if the key password is wrong or not provided then
GNUTLS_E_TPM_KEY_PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int gnutls_pubkey_import_tpm_url (gnutls_pubkey_t pkey, const [Function]

char* url, const char * srk_password, unsigned int flags)
pkey: The public key
url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t
structure.

Note that unless GNUTLS_PUBKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_
PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.1.0

Listing and deleting keys

The registered keys (that are stored in the TPM) can be listed using one of the following
functions. Those keys are unfortunately only identified by their UUID and have no label
or other human friendly identifier. Keys can be deleted from permament storage using

[gnutls_tpm_privkey_delete], page 479.

int [gnutls_tpm_get_registered], page 478 (gnutls_tpm_key_list_t * list)
void [gnutls_tpm_key_list_deinit], page 478 (gnutls_tpm_key_list_t list)
int [gnutls_tpm_key_list_get_url], page 479 (gnutls_tpm_key_list_t list,
unsigned int idx, char** url, unsigned int flags)

int gnutls_tpm_privkey_delete (const char* url, const char* [Function]

srk_password)
url: the URL describing the key

srk_password: a password for the SRK key
This function will unregister the private key from the TPM chip.

Chapter 5: Hardware security modules and abstract key types 100

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

5.3.4 Invoking tpmtool
Program that allows handling cryptographic data from the TPM chip.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the tpmtool program. This software is released under the GNU General
Public License, version 3 or later.

tpmtool help/usage (--help)

This is the automatically generated usage text for tpmtool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

tpmtool - GnuTLS TPM tool - Ver. QVERSION®

USAGE: tpmtool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, -—-debug=num Enable debugging.
- It must be in the range:
0 to 9999
--infile=file Input file
- file must pre-exist
--outfile=str OQutput file
--generate-rsa Generate an RSA private-public key pair
--register Any generated key will be registered in the TPM

- requires these options:
generate-rsa

--signing Any generated key will be a signing key
- requires these options:
generate-rsa
-— and prohibits these options:
legacy

--legacy Any generated key will be a legacy key
- requires these options:
generate-rsa
-- and prohibits these options:

signing

--user Any registered key will be a user key
- requires these options:
register
-- and prohibits these options:
system

--system Any registred key will be a system key

Chapter 5: Hardware security modules and abstract key types 101

- requires these options:

register
-- and prohibits these options:
user
—--pubkey=str Prints the public key of the provided key
--list Lists all stored keys in the TPM
--delete=str Delete the key identified by the given URL (UUID).
--sec-param=str Specify the security level [low, legacy, normal, high, ultral
--bits=num Specify the number of bits for key generate
—--inder Use the DER format for keys.
- disabled as --no-inder
--outder Use DER format for output keys
- disabled as --no-outder
-v, —--version[=arg] Output version information and exit
-h, --help Display extended usage information and exit
-1, ——more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Program that allows handling cryptographic data from the TPM chip.

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair in the TPM chip. The key may be stored in filesystem and protected by a
PIN, or stored (registered) in the TPM chip flash.

user option

This is the “any registered key will be a user key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: register.
e must not appear in combination with any of the following options: system.

The generated key will be stored in a user specific persistent storage.
system option

This is the “any registred key will be a system key” option.
This option has some usage constraints. It:

Chapter 5: Hardware security modules and abstract key types 102

e must appear in combination with the following options: register.

e must not appear in combination with any of the following options: user.

The generated key will be stored in system persistent storage.

sec-param option

R

This is the “specify the security level [low, legacy, normal, high, ultra].” option. This option
takes an argument string Security parameter. This is alternative to the bits option. Note
however that the values allowed by the TPM chip are quantized and given values may be

rounded up.

inder option

This is the “use the der format for keys.” option. The input files will be assumed to be in
the portable DER format of TPM. The default format is a custom format used by various
TPM tools

outder option

This is the “use der format for output keys” option. The output will be in the TPM portable
DER format.

tpmtool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

tpmtool See Also
plltool (1), certtool (1)

tpmtool Examples

To generate a key that is to be stored in filesystem use:

$ tpmtool --generate-rsa --bits 2048 --outfile tpmkey.pem
To generate a key that is to be stored in TPM’s flash use:

$ tpmtool --generate-rsa --bits 2048 --register --user
To get the public key of a TPM key use:

$ tpmtool --pubkey tpmkey:uuid=58ad734b-bde6-45c7-89d8-756a55ad1891;storage=user \
--outfile pubkey.pem

or if the key is stored in the filesystem:

$ tpmtool --pubkey tpmkey:file=tmpkey.pem --outfile pubkey.pem
To list all keys stored in TPM use:

$ tpmtool --list

Chapter 6: How to use GnuTLS in applications 103

6 How to use GnuTLS in applications

6.1 Introduction

This chapter tries to explain the basic functionality of the current GnuTLS library. Note
that there may be additional functionality not discussed here but included in the library.
Checking the header files in /usr/include/gnutls/ and the manpages is recommended.

6.1.1 General idea

A brief description of how GnuTLS sessions operate is shown at Figure 6.1. This section
will become more clear when it is completely read. As shown in the figure, there is a read-
only global state that is initialized once by the global initialization function. This global
structure, among others, contains the memory allocation functions used, structures needed
for the ASN.1 parser and depending on the system’s CPU, pointers to hardware accelerated
encryption functions. This structure is never modified by any GnuTLS function, except for
the deinitialization function which frees all allocated memory and must be called after the
program has permanently finished using GnuTLS.

Global state Credentials

TLS Session TLS Session | 4

Session Database
Backend

Transport Layer

Figure 6.1: High level design of GnuTLS.

The credentials structures are used by the authentication methods, such as certificate au-
thentication. They store certificates, privates keys, and other information that is needed
to prove the identity to the peer, and/or verify the indentity of the peer. The information
stored in the credentials structures is initialized once and then can be shared by many TLS
sessions.

A GnuTLS session contains all the required information to handle one secure connection.
The session communicates with the peers using the provided functions of the transport
layer. Every session has a unique session ID shared with the peer.

Chapter 6: How to use GnuTLS in applications 104

Since TLS sessions can be resumed, servers need a database back-end to hold the session’s
parameters. Every GnuTLS session after a successful handshake calls the appropriate back-
end function (see [resume|, page 10) to store the newly negotiated session. The session
database is examined by the server just after having received the client hello!, and if the
session ID sent by the client, matches a stored session, the stored session will be retrieved,
and the new session will be a resumed one, and will share the same session ID with the
previous one.

6.1.2 Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will be
disallowed. Such an example is GNUTLS_E_DECRYPTION_FAILED. Non-fatal errors may
warn about something, i.e., a warning alert was received, or indicate the some action
has to be taken. This is the case with the error code GNUTLS_E_REHANDSHAKE returned
by [gnutls_record_recv], page 324. This error code indicates that the server requests a re-
handshake. The client may ignore this request, or may reply with an alert. You can test if
an error code is a fatal one by using the [gnutls_error_is_fatal], page 298. All errors can be
converted to a descriptive string using [gnutls_strerror|, page 343.

If any non fatal errors, that require an action, are to be returned by a function, these
error codes will be documented in the function’s reference. For example the error codes
GNUTLS_E_WARNING_ALERT_RECEIVED and GNUTLS_E_FATAL_ALERT_RECEIVED that may re-
turned when receiving data, should be handled by notifying the user of the alert (as ex-
plained in Section 6.9 [Handling alerts], page 126). See Appendix C [Error codes|, page 258,
for a description of the available error codes.

6.1.3 Common types

All strings that are to provided as input to GnuTLS functions should be in UTF-8 unless
otherwise specified. Output strings are also in UTF-8 format unless otherwise specified.

When data of a fixed size are provided to GnuTLS functions then the helper structure
gnutls_datum_t is often used. Its definition is shown below.

typedef struct

{
unsigned char *data;
unsigned int size;

} gnutls_datum_t;

Other functions that require data for scattered read use a structure similar to struct iovec
typically used by readv. It is shown below.

typedef struct
{

void *iov_base; /* Starting address */

size_t iov_len; /* Number of bytes to transfer */
} giovec_t;

L The first message in a TLS handshake

Chapter 6: How to use GnuTLS in applications 105

6.1.4 Debugging and auditing

In many cases things may not go as expected and further information, to assist debug-
ging, from GnuTLS is desired. Those are the cases where the [gnutls_global_set_log_level],
page 300 and [gnutls_global_set_log_function], page 300 are to be used. Those will print
verbose information on the GnuTLS functions internal flow.

void [gnutls_global_set_log_levell, page 300 (int level)
void [gnutls_global_set_log_function], page 300 (gnutls_log_func log_func)

When debugging is not required, important issues, such as detected attacks on the
protocol still need to be logged. This is provided by the logging function set by
[gnutls_global_set_audit_log_function], page 300. The provided function will receive an
message and the corresponding TLS session. The session information might be used to
derive IP addresses or other information about the peer involved.

void gnutls_global_set_audit_log_function [Function]
(gnutls_audit_log_func log_func)
log_func: it is the audit log function

This is the function where you set the logging function gnutls is going to use. This is
different from gnutls_global_set_log_function() because it will report the session
of the event if any. Note that that session might be null if there is no corresponding
TLS session.

gnutls_audit_log_func is of the form, void (*gnutls_audit_log_func)(
gnutls_session_t, const char®);

Since: 3.0

6.1.5 Thread safety

The GnuTLS library is thread safe by design, meaning that objects of the library such as
TLS sessions, can be safely divided across threads as long as a single thread accesses a single
object. This is sufficient to support a server which handles several sessions per thread. If,
however, an object needs to be shared across threads then access must be protected with a
mutex. Read-only access to objects, for example the credentials holding structures, is also
thread-safe.

The random generator of the cryptographic back-end, is not thread safe and requires mu-
tex locks which are setup by GnuTLS. Applications can either call [gnutls_global init],
page 299 which will initialize the default operating system provided locks (i.e. pthreads on
GNU/Linux and CriticalSection on Windows), or manually specify the locking system
using the function [gnutls_global_set_mutex]|, page 301 before calling [gnutls_global_init],
page 299. Setting mutexes manually is recommended only for applications that have full
control of the underlying libraries. If this is not the case, the use of the operating system
defaults is recommended. An example of non-native thread usage is shown below.

#include <gnutls/gnutls.h>

int main()
{
/* When the system mutexes are not to be used
* gnutls_global_set_mutex() must be called explicitly

Chapter 6: How to use GnuTLS in applications 106

*/
gnutls_global_set_mutex (mutex_init, mutex_deinit,
mutex_lock, mutex_unlock);
gnutls_global_init();

}
void gnutls_global_set_mutex (mutex_init_func init, [Function]
mutex_deinit_func deinit, mutex_lock_func lock, mutex_unlock_func
unlock)

init: mutex initialization function
deinit: mutex deinitialization function
lock: mutex locking function

unlock: mutex unlocking function

With this function you are allowed to override the default mutex locks used in some
parts of gnutls and dependent libraries. This function should be used if you have
complete control of your program and libraries. Do not call this function from a
library. Instead only initialize gnutls and the default OS mutex locks will be used.

This function must be called before gnutls_global_init() .
Since: 2.12.0

6.1.6 Callback functions

There are several cases where GnuTLS may need out of band input from your program.
This is now implemented using some callback functions, which your program is expected to
register.

An example of this type of functions are the push and pull callbacks which are used to
specify the functions that will retrieve and send data to the transport layer.

void [gnutls_transport_set_push_function], page 348 (gnutls_session_t
session, gnutls_push_func push_func)
void [gnutls_transport_set_pull_function], page 347 (gnutls_session_t
session, gnutls_pull_func pull_func)

Other callback functions may require more complicated input and data to be allocated.
Such an example is [gnutls_srp_set_server_credentials_function], page 339. All callbacks
should allocate and free memory using gnutls_malloc and gnutls_free.

6.2 Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

6.2.1 Headers

All the data types and functions of the GnuTLS library are defined in the header file
gnutls/gnutls.h. This must be included in all programs that make use of the GnuTLS
library.

Chapter 6: How to use GnuTLS in applications 107

6.2.2 Initialization

GnuTLS must be initialized before it can be used. The library is initialized by calling
[gnutls_global_init], page 299. The resources allocated by the initialization process can be
released if the application no longer has a need to call GnuTLS functions, this is done by
calling [gnutls_global_deinit], page 299.

In order to take advantage of the internationalization features in GnuTLS, such as trans-
lated error messages, the application must set the current locale using setlocale before
initializing GnuTLS.

6.2.3 Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits
all requirements. Even with binary compatibility new features may have been introduced
but due to problem with the dynamic linker an old version is actually used. So you may
want to check that the version is okay right after program start-up. See the function
[gnutls_check_version], page 288.

6.2.4 Building the source

If you want to compile a source file including the gnutls/gnutls.h header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the -I option).

However, the path to the include file is determined at the time the source is configured. To
solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the --cflags option to pkg-config
gnutls. The following example shows how it can be used at the command line:

gcc —-c foo.c ‘pkg-config gnutls --cflags®
Adding the output of ‘pkg-config gnutls --cflags’ to the compilers command line will
ensure that the compiler can find the gnutls/gnutls.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added
to the library search path (via the -L option). For this, the option —-1ibs to pkg-config
gnutls can be used. For convenience, this option also outputs all other options that are
required to link the program with the library (for instance, the ‘-1tasn1’ option). The
example shows how to link foo.o with the library to a program foo.

gcc —o foo foo.o ‘pkg-config gnutls --1libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc —o foo foo.c ‘pkg-config gnutls --cflags --libs®

When a program uses the GNU autoconf system, then the following line or similar can be
used to detect the presence of GnuTLS.

PKG_CHECK_MODULES ([LIBGNUTLS], [gnutls >= 3.0.0])

AC_SUBST ([LIBGNUTLS_CFLAGS])
AC_SUBST([LIBGNUTLS_LIBS])

Chapter 6: How to use GnuTLS in applications 108

6.3 Session initialization

In the previous sections we have discussed the global initialization required for GnuTLS
as well as the initialization required for each authentication method’s credentials (see
Section 3.5.2 [Authentication], page 10). In this section we elaborate on the TLS or DTLS
session initiation. Each session is initialized using [gnutls_init], page 307 which among
others is used to specify the type of the connection (server or client), and the underlying
protocol type, i.e., datagram (UDP) or reliable (TCP).

int gnutls_init (gnutls_session_t * session, unsigned int flags) [Function]
session: is a pointer to a gnutls_session_t structure.

flags: indicate if this session is to be used for server or client.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit() . Returns GNUTLS_E_SUCCESS
(0) on success.

flags can be one of GNUTLS_CLIENT and GNUTLS_SERVER . For a DTLS entity, the
flags GNUTLS_DATAGRAM and GNUTLS_NONBLOCK are also available. The latter flag will
enable a non-blocking operation of the DTLS timers.

Note that since version 3.1.2 this function enables some common TLS extensions such
as session tickets and OCSP certificate status request in client side by default. To
prevent that use the GNUTLS_NO_EXTENSIONS flag.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

After the session initialization details on the allowed ciphersuites and protocol versions
should be set using the priority functions such as [gnutls_priority_set_direct|, page 317. We
elaborate on them in Section 6.10 [Priority Strings|, page 128. The credentials used for
the key exchange method, such as certificates or usernames and passwords should also be
associated with the session current session using [gnutls_credentials_set], page 291.

int gnutls_credentials_set (gnutls_session_t session, [Function]
gnutls_credentials_type_t type, void * cred)

session: is a gnutls_session_t structure.
type: is the type of the credentials
cred: is a pointer to a structure.
Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The cred parameter is a structure that depends on the specified
type and on the current session (client or server).
In order to minimize memory usage, and share credentials between several threads
gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have
to keep the structure allocated until you call gnutls_deinit() .
For GNUTLS_CRD_ANON , cred should be gnutls_anon_client_credentials_t in case
of a client. In case of a server it should be gnutls_anon_server_credentials_t .

For GNUTLS_CRD_SRP , cred should be gnutls_srp_client_credentials_t in case
of a client, and gnutls_srp_server_credentials_t , in case of a server.

Chapter 6: How to use GnuTLS in applications 109

For GNUTLS_CRD_CERTIFICATE, cred should be gnutls_certificate_credentials_
t.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

6.4 Associating the credentials

Each authentication method is associated with a key exchange method, and a credentials
type. The contents of the credentials is method-dependent, e.g. certificates for
certificate authentication and should be initialized and associated with a session (see
[gnutls_credentials_set], page 291). A mapping of the key exchange methods with the
credential types is shown in Table 6.1.

Authentication Key exchange Client Server creden-
method credentials tials
Certificate KX_RSA, KX_DHE_ CRD CRD

RSA, KX_DHE_DSS, CERTIFICATE CERTIFICATE
KX_ECDHE_RSA,

KX_ECDHE_ECDSA,

KX_RSA_EXPORT

Password and KX_SRP_RSA, CRD_SRP CRD_
certificate KX_SRP_DSS CERTIFICATE,
CRD_SRP

Password KX_SRP CRD_SRP CRD_SRP

Anonymous KX_ANON_DH, CRD_ANON CRD_ANON
KX_ANON_ECDH

Pre-shared key KX_PSK, KX_ CRD_PSK CRD_PSK
DHE_PSK,

KX_ECDHE_PSK
Table 6.1: Key exchange algorithms and the corresponding credential types.

6.4.1 Certificates

Server certificate authentication

When using certificates the server is required to have at least one certificate and private
key pair. Clients may not hold such a pair, but a server could require it. In this section we
discuss general issues applying to both client and server certificates. The next section will
elaborate on issues arising from client authentication only.

Chapter 6: How to use GnuTLS in applications 110

int [gnutls_certificate_allocate_credentials], page 274
(gnutls_certificate_credentials_t * res)

void [gnutls_certificate_free_credentials], page 275
(gnutls_certificate_credentials_t sc)

After the credentials structures are initialized, the certificate and key pair must be loaded.
This occurs before any TLS session is initialized, and the same structures are reused for
multiple sessions. Depending on the certificate type different loading functions are available,
as shown below. For X.509 certificates, the functions will accept and use a certificate chain
that leads to a trusted authority. The certificate chain must be ordered in such way that
every certificate certifies the one before it. The trusted authority’s certificate need not to
be included since the peer should possess it already.

int [gnutls_certificate_set_x509_key_mem2], page 283
(gnutls_certificate_credentials_t res, const gnutls_datum_t * cert, const
gnutls_datum_t * key, gnutls_x509_crt_fmt_t type, const char* pass, unsigned
int flags)

int [gnutls_certificate_set_x509_key], page 281
(gnutls_certificate_credentials_t res, gnutls_x509_crt_t * cert_list, int
cert_list_size, gnutls_x509_privkey_t key)

int [gnutls_certificate_set_x509_key_file2], page 282
(gnutls_certificate_credentials_t res, const char * certfile, const char *
keyfile, gnutls_x509_crt_fmt_t type, const char* pass, unsigned int flags)

int [gnutls_certificate_set_openpgp_key_mem], page 441
(gnutls_certificate_credentials_t res, const gnutls_datum_t * cert, const
gnutls_datum_t * key, gnutls_openpgp_crt_fmt_t format)

int [gnutls_certificate_set_openpgp_keyl, page 440
(gnutls_certificate_credentials_t res, gnutls_openpgp_crt_t crt,
gnutls_openpgp_privkey_t pkey)

int [gnutls_certificate_set_openpgp_key_file], page 441
(gnutls_certificate_credentials_t res, const char *x certfile, const char *
keyfile, gnutls_openpgp_crt_fmt_t format)

Note however, that since functions like [gnutls_certificate_set_x509_key_file2], page 282
may accept URLs that specify objects stored in token, another important function is
[gnutls_certificate_set_pin_function|, page 278. That allows setting a callback function to
retrieve a PIN if the input keys are protected by PIN by the token.

void gnutls_certificate_set_pin_function [Function]
(gnutls_certificate_credentials_t cred, gnutls_pin_callback_t fn, void *
userdata)

cred: is a gnutls_certificate_credentials_t structure.
fn: A PIN callback
userdata: Data to be passed in the callback

This function will set a callback function to be used when required to access a pro-
tected object. This function overrides any other global PIN functions.

Note that this function must be called right after initialization to have effect.
Since: 3.1.0

Chapter 6: How to use GnuTLS in applications 111

If the imported keys and certificates need to be accessed before any TLS session is es-
tablished, it is convenient to use [gnutls_certificate_set_key], page 480 in combination with
[gnutls_pcert_import_x509_raw|, page 482 and [gnutls_privkey_import_x509_raw|, page 488.

int gnutls_certificate_set_key (gnutls_certificate_credentials_t [Function]
res, const char** names, int names_size, gnutls_pcert_st * pcert_list, int
pcert_list_size, gnutls_privkey_t key)
res: is a gnutls_certificate_credentials_t structure.

names: is an array of DNS name of the certificate (NULL if none)
names_size: holds the size of the names list

peert_list: contains a certificate list (path) for the specified private key
pcert_list_size: holds the size of the certificate list

key: is a gnutls_privkey_t key

This function sets a certificate/private key pair in the gnutls_certificate_credentials_t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in pcert_list . The pcert_list and key will become part of the credentials
structure and must not be deallocated. They will be automatically deallocated when
res is deinitialized.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.
Since: 3.0

If multiple certificates are used with the functions above each client’s request will be served
with the certificate that matches the requested name (see Section 3.6.2 [Server name indi-
cation|, page 11).

As an alternative to loading from files or buffers, a callback may be used for the server
or the client to specify the certificate and the key at the handshake time. In that case a
certificate should be selected according the peer’s signature algorithm preferences. To get
those preferences use [gnutls_sign_algorithm_get_requested], page 334. Both functions are
shown below.

void [gnutls_certificate_set_retrieve_function], page 279
(gnutls_certificate_credentials_t cred, gnutls_certificate_retrieve_function
*x func)

void [gnutls_certificate_set_retrieve_function2], page 480
(gnutls_certificate_credentials_t cred,
gnutls_certificate_retrieve_function2 * func)

int [gnutls_sign_algorithm_get_requested], page 334 (gnutls_session_t
session, size_t indx, gnutls_sign_algorithm_t * algo)

The functions above do not handle the requested server name automatically. A server would
need to check the name requested by the client using [gnutls_server_name_get|, page 328,
and serve the appropriate certificate. Note that some of these functions require the gnutls_
pcert_st structure to be filled in. Helper functions to make the required structures are
listed below.

Chapter 6: How to use GnuTLS in applications 112

typedef struct gnutls_pcert_st

{
gnutls_pubkey_t pubkey;
gnutls_datum_t cert;
gnutls_certificate_type_t type;

} gnutls_pcert_st;

int [gnutls_pcert_import_x509], page 482 (gnutls_pcert_st* pcert,
gnutls_x509_crt_t crt, unsigned int flags)

int [gnutls_pcert_import_openpgpl, page 481 (gnutls_pcert_st* pcert,
gnutls_openpgp_crt_t crt, unsigned int flags)

int [gnutls_pcert_import_x509_raw], page 482 (gnutls_pcert_st * pcert, const
gnutls_datum_t* cert, gnutls_x509_crt_fmt_t format, unsigned int flags)

int [gnutls_pcert_import_openpgp_raw], page 482 (gnutls_pcert_st * pcert,
const gnutls_datum_t* cert, gnutls_openpgp_crt_fmt_t format,
gnutls_openpgp_keyid_t keyid, unsigned int flags)

void [gnutls_pcert_deinit], page 481 (gnutls_pcert_st * pcert)

In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so some
key exchange methods might not be available with all certificates. GnuTLS will disable
ciphersuites that are not compatible with the key, or the enabled authentication methods.
For example keys marked as sign-only, will not be able to access the plain RSA ciphersuites,
that require decryption. It is not recommended to use RSA keys for both signing and
encryption. If possible use a different key for the DHE-RSA which uses signing and RSA that
requires decryption. All the key exchange methods shown in Table 4.1 are available in
certificate authentication.

Client certificate authentication

If a certificate is to be requested from the client during the handshake, the
server will send a certificate request message. This behavior is controlled
[gnutls_certificate_server_set_request], page 277. The request contains a list of the
acceptable by the server certificate signers. This list is constructed using the trusted
certificate authorities of the server. In cases where the server supports a large number of
certificate authorities it makes sense not to advertise all of the names to save bandwidth.
That can be controlled using the function [gnutls_certificate_send-x509_rdn_sequence],
page 276. This however will have the side-effect of not restricting the client to certificates
signed by server’s acceptable signers.

void gnutls_certificate_server_set_request (gnutls_session_t [Function]
session, gnutls_certificate_request_t req)
session: is a gnutls_session_t structure.

req: is one of GNUTLS_CERT_REQUEST, GNUTLS_CERT_REQUIRE

This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If req is GNUTLS_CERT_REQUIRE then the server will
return an error if the peer does not provide a certificate. If you do not call this
function then the client will not be asked to send a certificate.

Chapter 6: How to use GnuTLS in applications 113

void gnutls_certificate_send_x509_rdn_sequence [Function]
(gnutls_session_t session, int status)
session: is a pointer to a gnutls_session_t structure.

status: is 0 or 1

If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertise its trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertise the server’s trusted CAs.

This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

Client or server certificate verification

Certificate verification is possible by loading the trusted authorities into the credentials
structure by using the following functions, applicable to X.509 and OpenPGP certificates.

int [gnutls_certificate_set_x509_system_trust], page 284
(gnutls_certificate_credentials_t cred)

int [gnutls_certificate_set_x509_trust_file], page 285
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_openpgp_keyring_ file], page 442
(gnutls_certificate_credentials_t c, const char * file,
gnutls_openpgp_crt_fmt_t format)

The peer’s certificate is not automatically verified and one must call [gnutls_certificate_verify_peers3],
page 288 after a successful handshake to verify the certificate’s signature and the

owner of the -certificate. The verification status returned can be printed using
[gnutls_certificate_verification_status_print], page 287.

Alternatively the wverification can occur during the handshake by using
[gnutls_certificate_set_verify_function|, page 279.

The functions above provide a brief verification output. If a detailed output is required one
should call [gnutls_certificate_get_peers|, page 276 to obtain the raw certificate of the peer
and verify it using the functions discussed in Section 4.1.1 [X.509 certificates|, page 19.

int gnutls_certificate_verify_peers3 (gnutls_session_t session, [Function]
const char* hostname, unsigned int * status)
session: is a gnutls session

hostname: is the expected name of the peer; may be NULL
status: is the output of the verification

This function will verify the peer’s certificate and store the status in the status
variable as a bitwise or’d gnutls_certificate_status_t values or zero if the certificate is
trusted. Note that value in status is set only when the return value of this function
is success (i.e, failure to trust a certificate does not imply a negative return value).

If the hostname provided is non-NULL then this function will compare the host-
name in the certificate against the given. If they do not match the GNUTLS_CERT_
UNEXPECTED_OWNER status flag will be set.

Chapter 6: How to use GnuTLS in applications 114

If available the OCSP Certificate Status extension will be utilized by this function.

To avoid denial of service attacks some default upper limits regarding the certificate
key size and chain size are set. To override them use gnutls_certificate_set_
verify_limits() .

Returns: a negative error code on error and GNUTLS_E_SUCCESS (0) on success.
Since: 3.1.4

void gnutls_certificate_set_verify_function [Function]
(gnutls_certificate_credentials_t cred, gnutls_certificate_verify_function * func)
cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called when peer’s certificate has been received in
order to verify it on receipt rather than doing after the handshake is completed.

The callback’s function prototype is: int (*callback)(gnutls_session_t);

If the callback function is provided then gnutls will call it, in the handshake, just
after the certificate message has been received. To verify or obtain the certificate
the gnutls_certificate_verify_peers2() , gnutls_certificate_type_get() ,
gnutls_certificate_get_peers() functions can be used.

The callback function should return 0 for the handshake to continue or non-zero to
terminate.

Since: 2.10.0
6.4.2 SRP

The initialization functions in SRP credentials differ between client and server. Clients
supporting SRP should set the username and password prior to connection, to the credentials
structure. Alternatively [gnutls_srp_set_client_credentials_function|, page 338 may be used
instead, to specify a callback function that should return the SRP username and password.
The callback is called once during the TLS handshake.

int [gnutls_srp_allocate_server_credentials], page 336
(gnutls_srp_server_credentials_t * sc)

int [gnutls_srp_allocate_client_credentials], page 335
(gnutls_srp_client_credentials_t * sc)

void [gnutls_srp_free_server_credentials], page 337
(gnutls_srp_server_credentials_t sc)

void [gnutls_srp_free_client_credentials], page 337
(gnutls_srp_client_credentials_t sc)

int [gnutls_srp_set_client_credentials], page 338
(gnutls_srp_client_credentials_t res, const char * username, const char *
password)

void gnutls_srp_set_client_credentials_function [Function]
(gnutls_srp_client_credentials_t cred, gnutls_srp_client_credentials_function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

func: is the callback function

Chapter 6: How to use GnuTLS in applications 115

This function can be used to set a callback to retrieve the username and password for
client SRP authentication. The callback’s function form is:

int (*callback)(gnutls_session_t, char** username, char**password);

The username and password must be allocated using gnutls_malloc() . username
and password should be ASCII strings or UTF-8 strings prepared using the "SASL-
prep" profile of "stringprep".

The callback function will be called once per handshake before the initial hello message
is sent.

The callback should not return a negative error code the second time called, since the
handshake procedure will be aborted.

The callback function should return 0 on success. -1 indicates an error.

In server side the default behavior of GnuTLS is to read the usernames and SRP
verifiers from password files. = These password file format is compatible the with
the Stanford srp libraries format. If a different password file format is to be used,
then [gnutls_srp_set_server_credentials_function|, page 339 should be called, to set an
appropriate callback.

int gnutls_srp_set_server_credentials_file [Function]
(gnutls_srp_server_credentials_t res, const char * password_file, const char
* password_conf_file)
res: is a gnutls_srp_server_credentials_t structure.
password_file: is the SRP password file (tpasswd)
password_conf-file: is the SRP password conf file (tpasswd.conf)
This function sets the password files, in a gnutls_srp_server_credentials_t struc-

ture. Those password files hold usernames and verifiers and will be used for SRP
authentication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

void gnutls_srp_set_server_credentials_function [Function]
(gnutls_srp_server_credentials_t cred, gnutls_srp_server_credentials_function *
func)

cred: is a gnutls_srp_server_credentials_t structure.
func: is the callback function

This function can be used to set a callback to retrieve the user’s SRP credentials.
The callback’s function form is:

int (*callback)(gnutls_session_t, const char* username, gnutls_datum_t* salt,
gnutls_datum_t *verifier, gnutls_datum_t* g, gnutls_datum_t* n);

username contains the actual username. The salt , verifier , generator and prime
must be filled in using the gnutls_malloc() . For convenience prime and generator
may also be one of the static parameters defined in gnutls.h.

In case the callback returned a negative number then gnutls will assume that the
username does not exist.

Chapter 6: How to use GnuTLS in applications 116

In order to prevent attackers from guessing valid usernames, if a user does not exist,
g and n values should be filled in using a random user’s parameters. In that case the
callback must return the special value (1).

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

6.4.3 PSK

The initialization functions in PSK credentials differ between client and server.

int [gnutls_psk_allocate_server_credentials], page 318
(gnutls_psk_server_credentials_t * sc)

int [gnutls_psk_allocate_client_credentials], page 318
(gnutls_psk_client_credentials_t * sc)

void [gnutls_psk_free_server_credentials], page 319
(gnutls_psk_server_credentials_t sc)

void [gnutls_psk_free_client_credentials], page 319
(gnutls_psk_client_credentials_t sc)

Clients supporting PSK should supply the username and key before a TLS session is estab-
lished. Alternatively [gnutls_psk_set_client_credentials_function|, page 320 can be used to
specify a callback function. This has the advantage that the callback will be called only if
PSK has been negotiated.

int [gnutls_psk_set_client_credentials], page 319
(gnutls_psk_client_credentials_t res, const char * username, const
gnutls_datum_t * key, gnutls_psk_key_flags flags)

void gnutls_psk_set_client_credentials_function [Function]
(gnutls_psk_client_credentials_t cred, gnutls_psk_client_credentials_function *
func)

cred: is a gnutls_psk_server_credentials_t structure.
func: is the callback function

This function can be used to set a callback to retrieve the username and pass-
word for client PSK authentication. The callback’s function form is: int (*call-
back)(gnutls_session_t, char** username, gnutls_datum_t* key);

The username and key ->data must be allocated using gnutls_malloc() . username
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of
"stringprep".

The callback function will be called once per handshake.

The callback function should return 0 on success. -1 indicates an error.

In server side the default behavior of GnuTLS is to read the usernames and PSK keys
from a password file. The password file should contain usernames and keys in hexadecimal
format. The name of the password file can be stored to the credentials structure by calling
[gnutls_psk_set_server_credentials_file], page 320. If a different password file format is to be
used, then a callback should be set instead by [gnutls_psk_set_server_credentials_function],
page 320.

Chapter 6: How to use GnuTLS in applications 117

The server can help the client chose a suitable username and password, by sending a hint.
Note that there is no common profile for the PSK hint and applications are discouraged
to use it. A server, may specify the hint by calling [gnutls_psk_set_server_credentials_hint],
page 321. The client can retrieve the hint, for example in the callback function, using
[gnutls_psk_client_get_hint], page 318.

int gnutls_psk_set_server_credentials_file [Function]
(gnutls_psk_server_credentials_t res, const char * password_file)
res: is a gnutls_psk_server_credentials_t structure.

password_file: is the PSK password file (passwd.psk)

This function sets the password file, in a gnutls_psk_server_credentials_t struc-
ture. This password file holds usernames and keys and will be used for PSK authen-
tication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

void [gnutls_psk_set_server_credentials_function], page 320
(gnutls_psk_server_credentials_t cred,
gnutls_psk_server_credentials_function * func)

int [gnutls_psk_set_server_credentials_hint], page 321
(gnutls_psk_server_credentials_t res, const char * hint)

const char * [gnutls_psk_client_get_hint], page 318 (gnutls_session_t
session)

6.4.4 Anonymous

The key exchange methods for anonymous authentication might require Diffie-Hellman
parameters to be generated by the server and associated with an anonymous credentials
structure. Check Section 6.12.3 [Parameter generation], page 141 for more information.
The initialization functions for the credentials are shown below.

int [gnutls_anon_allocate_server_credentials], page 271
(gnutls_anon_server_credentials_t * sc)

int [gnutls_anon_allocate_client_credentials], page 271
(gnutls_anon_client_credentials_t * sc)

void [gnutls_anon_free_server_credentials], page 272
(gnutls_anon_server_credentials_t sc)

void [gnutls_anon_free_client_credentials], page 271
(gnutls_anon_client_credentials_t sc)

6.5 Setting up the transport layer

The next step is to setup the underlying transport layer details. The Berkeley sockets are
implicitly used by GnuTLS, thus a call to [gnutls_transport_set_int], page 346 would be
sufficient to specify the socket descriptor.

Chapter 6: How to use GnuTLS in applications 118

void [gnutls_transport_set_int], page 346 (gnutls_session_t session, int i)
void [gnutls_transport_set_int2], page 346 (gnutls_session_t session, int
recv_int, int send_int)

If however another transport layer than TCP is selected, then a pointer should be used
instead to express the parameter to be passed to custom functions. In that case the following
functions should be used instead.

void [gnutls_transport_set_ptr], page 347 (gnutls_session_t session,
gnutls_transport_ptr_t ptr)

void [gnutls_transport_set_ptr2], page 347 (gnutls_session_t session,
gnutls_transport_ptr_t recv_ptr, gnutls_transport_ptr_t send_ptr)

Moreover all of the following push and pull callbacks should be set.

void gnutls_transport_set_push_function (gnutls_session_t [Function]
session, gnutls_push_func push_func)
session: is a gnutls_session_t structure.

push_func: a callback function similar to write ()

This is the function where you set a push function for gnutls to use in order to send
data. If you are going to use berkeley style sockets, you do not need to use this
function since the default send(2) will probably be ok. Otherwise you should specify
this function for gnutls to be able to send data. The callback should return a positive
number indicating the bytes sent, and -1 on error.

push_func is of the form, ssize_t (*gnutls_push_func)(gnutls_transport_ptr_t, const
void*, size_t);

void gnutls_transport_set_vec_push_function (gnutls_session_t [Function]
session, gnutls_vec_push_func vec_func)
session: is a gnutls_session_t structure.

vec_func: a callback function similar to writev()

Using this function you can override the default writev(2) function for gnutls to send
data. Setting this callback instead of gnutls_transport_set_push_function() is
recommended since it introduces less overhead in the TLS handshake process.

vec_func is of the form, ssize_t (*gnutls_vec_push_func) (gnutls_transport_ptr_t,
const giovec_t * iov, int iovent);

Since: 2.12.0

void gnutls_transport_set_pull_function (gnutls_session_t [Function]
session, gnutls_pull_func pull_func)
session: is a gnutls_session_t structure.

pull_func: a callback function similar to read ()

This is the function where you set a function for gnutls to receive data. Normally,
if you use berkeley style sockets, do not need to use this function since the default
recv(2) will probably be ok. The callback should return 0 on connection termination,
a positive number indicating the number of bytes received, and -1 on error.
gnutls_pull_func is of the form, ssize_t (*gnutls_pull_func)(gnutls_transport_ptr_t,
void*, size_t);

Chapter 6: How to use GnuTLS in applications 119

void gnutls_transport_set_pull_timeout_function [Function]
(gnutls_session_t session, gnutls_pull_timeout_func func)
session: is a gnutls_session_t structure.

func: a callback function

This is the function where you set a function for gnutls to know whether data are
ready to be received. It should wait for data a given time frame in milliseconds. The
callback should return 0 on timeout, a positive number if data can be received, and
-1 on error. You’ll need to override this function if select() is not suitable for the
provided transport calls.

As with select () , if the timeout value is zero the callback should return zero if no
data are immediately available.

gnutls_pull_timeout_func is of the form, int (*gnutls_pull_timeout_func)(gnutls_transport_ptr_t,
unsigned int ms);

Since: 3.0

The functions above accept a callback function which should return the number of bytes
written, or -1 on error and should set errno appropriately. In some environments, setting
errno is unreliable. For example Windows have several errno variables in different CRTs,
or in other systems it may be a non thread-local variable. If this is a concern to you,
call [gnutls_transport_set_errno|, page 346 with the intended errno value instead of setting
errno directly.

void gnutls_transport_set_errno (gnutls_session_t session, int [Function]
err)

session: is a gnutls_session_t structure.
err: error value to store in session-specific errno variable.
Store err in the session-specific errno variable. Useful values for err is EAGAIN
and EINTR, other values are treated will be treated as real errors in the push/pull
function.
This function is useful in replacement push and pull functions set by gnutls_
transport_set_push_function() and gnutls_transport_set_pull_function()
under Windows, where the replacements may not have access to the same errno

variable that is used by GnuTLS (e.g., the application is linked to msver71.dll and
gnutls is linked to msvert.dll).

GnuTLS currently only interprets the EINTR, EAGAIN and EMSGSIZE errno values and
returns the corresponding GnuTLS error codes:

e GNUTLS_E_INTERRUPTED

e GNUTLS_E_AGAIN

e GNUTLS_E_LARGE_PACKET
The EINTR and EAGAIN values are returned by interrupted system calls, or when non
blocking IO is used. All GnuTLS functions can be resumed (called again), if any of the

above error codes is returned. The EMSGSIZE value is returned when attempting to send
a large datagram.

Chapter 6: How to use GnuTLS in applications 120

In the case of DTLS it is also desirable to override the generic transport functions
with functions that emulate the operation of recvfrom and sendto. In addition
DTLS requires timers during the receive of a handshake message, set using the
[gnutls_transport_set_pull_timeout_function|, page 347 function. To check the retransmis-
sion timers the function [gnutls_dtls_get_timeout|, page 351 is provided, which returns the
time remaining until the next retransmission, or better the time until [gnutls_handshake],
page 302 should be called again.

void gnutls_transport_set_pull_timeout_function [Function]
(gnutls_session_t session, gnutls_pull_timeout_func func)
session: is a gnutls_session_t structure.

func: a callback function

This is the function where you set a function for gnutls to know whether data are
ready to be received. It should wait for data a given time frame in milliseconds. The
callback should return 0 on timeout, a positive number if data can be received, and
-1 on error. You'll need to override this function if select() is not suitable for the
provided transport calls.

As with select () , if the timeout value is zero the callback should return zero if no
data are immediately available.

gnutls_pull_timeout_func is of the form, int (*gnutls_pull_timeout_func)(gnutls_transport_ptr_t,
unsigned int ms);
Since: 3.0

unsigned int gnutls_dtls_get_timeout (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function will return the milliseconds remaining for a retransmission of the pre-
viously sent handshake message. This function is useful when DTLS is used in non-
blocking mode, to estimate when to call gnutls_handshake () if no packets have been
received.

Returns: the remaining time in milliseconds.
Since: 3.0

6.5.1 Asynchronous operation

GnuTLS can be used with asynchronous socket or event-driven programming. The approach
is similar to using Berkeley sockets under such an environment. The blocking, due to net-
work interaction, calls such as [gnutls_handshake], page 302, [gnutls_record_recv], page 324,
can be set to non-blocking by setting the underlying sockets to non-blocking. If other push
and pull functions are setup, then they should behave the same way as recv and send
when used in a non-blocking way, i.e., set errno to EAGAIN. Since, during a TLS protocol
session GnuTLS does not block except for network interaction, the non blocking EAGAIN
errno will be propagated and GnuTLS functions will return the GNUTLS_E_AGAIN error code.
Such calls can be resumed the same way as a system call would. The only exception is
[gnutls_record_send], page 324, which if interrupted subsequent calls need not to include
the data to be sent (can be called with NULL argument).

The select system call can also be used in combination with the GnuTLS functions. select
allows monitoring of sockets and notifies on them being ready for reading or writing data.

Chapter 6: How to use GnuTLS in applications 121

Note however that this system call cannot notify on data present in GnuTLS read buffers,
it is only applicable to the kernel sockets API. Thus if you are using it for reading from a
GnuTLS session, make sure that any cached data are read completely. That can be achieved
by checking there are no data waiting to be read (using [gnutls_record_check_pending],
page 323), either before the select system call, or after a call to [gnutls_record_recv],
page 324. GnuTLS does not keep a write buffer, thus when writing no additional actions
are required.

Although in the TLS protocol implementation each call to receive or send function implies
to restoring the same function that was interrupted, in the DTLS protocol this requirement
isn’t true. There are cases where a retransmission is required, which are indicated by a
received message and thus [gnutls_record_get_direction], page 323 must be called to decide
which direction to check prior to restoring a function call.

int gnutls_record_get_direction (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function provides information about the internals of the record protocol and is
only useful if a prior gnutls function call (e.g. gnutls_handshake()) was interrupted
for some reason, that is, if a function returned GNUTLS_E_INTERRUPTED or GNUTLS_
E_AGAIN . In such a case, you might want to call select() or poll() before calling
the interrupted gnutls function again. To tell you whether a file descriptor should be
selected for either reading or writing, gnutls_record_get_direction() returns O if
the interrupted function was trying to read data, and 1 if it was trying to write data.

Returns: 0 if trying to read data, 1 if trying to write data.

Moreover, to prevent blocking from DTLS’ retransmission timers to block a handshake, the
[gnutls_init], page 307 function should be called with the GNUTLS_NONBLOCK flag set (see
Section 6.3 [Session initialization], page 108).

6.5.2 DTLS sessions

Because datagram TLS can operate over connections where the peer of a server cannot
be reliably verified, functionality is available to prevent denial of service attacks. GnuTLS
requires a server to generate a secret key that is used to sign a cookie?. That cookie is
sent to the client using [gnutls_dtls_cookie_send], page 349, and the client must reply using
the correct cookie. The server side should verify the initial message sent by client using
[gnutls_dtls_cookie_verify|, page 350. If successful the session should be initialized and
associated with the cookie using [gnutls_dtls_prestate_set|, page 351, before proceeding to

the handshake.

2 A key of 128 bits or 16 bytes should be sufficient for this purpose.

Chapter 6: How to use GnuTLS in applications 122

int [gnutls_key_generate], page 307 (gnutls_datum_t * key, unsigned int
key_size)

int [gnutls_dtls_cookie_send], page 349 (gnutls_datum_t* key, voidx*
client_data, size_t client_data_size, gnutls_dtls_prestate_st* prestate,
gnutls_transport_ptr_t ptr, gnutls_push_func push_func)

int [gnutls_dtls_cookie_verify], page 350 (gnutls_datum_t* key, voidx*
client_data, size_t client_data_size, void* _msg, size_t msg_size,
gnutls_dtls_prestate_st* prestate)

void [gnutls_dtls_prestate_set], page 351 (gnutls_session_t session,
gnutls_dtls_prestate_st* prestate)

Note that the above apply to server side only and they are not mandatory to be used. Not
using them, however, allows denial of service attacks. The client side cookie handling is
part of [gnutls_handshake], page 302.

Datagrams are typically restricted by a maximum transfer unit (MTU). For that both client
and server side should set the correct maximum transfer unit for the layer underneath
GnuTLS. This will allow proper fragmentation of DTLS messages and prevent messages
from being silently discarded by the transport layer. The “correct” maximum transfer unit
can be obtained through a path MTU discovery mechanism [RFC/821].

void [gnutls_dtls_set_mtul, page 351 (gnutls_session_t session, unsigned int
mtu)

unsigned int [gnutls_dtls_get_mtul], page 350 (gnutls_session_t session)
unsigned int [gnutls_dtls_get_data_mtul], page 350 (gnutls_session_t session)

6.6 TLS handshake

Once a session has been initialized and a network connection has been set up, TLS and
DTLS protocols perform a handshake. The handshake is the actual key exchange.

int gnutls_handshake (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function does the handshake of the TLS/SSL protocol, and initializes the TLS
connection.

This function will fail if any problem is encountered, and will return a negative error
code. In case of a client, if the client has asked to resume a session, but the server
couldn’t, then a full handshake will be performed.

The non-fatal errors such as GNUTLS_E_AGAIN and GNUTLS_E_INTERRUPTED interrupt
the handshake procedure, which should be resumed later. Call this function again,
until it returns 0; cf. gnutls_record_get_direction() and gnutls_error_is_
fatal() .

If this function is called by a server after a rehandshake request then GNUTLS_E_GOT_
APPLICATION_DATA or GNUTLS_E_WARNING_ALERT_RECEIVED may be returned. Note
that these are non fatal errors, only in the specific case of a rehandshake. Their
meaning is that the client rejected the rehandshake request or in the case of GNUTLS_
E_GOT_APPLICATION_DATA it might also mean that some data were pending.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Chapter 6: How to use GnuTLS in applications 123

void gnutls_handshake_set_timeout (gnutls_session_t session, [Function]
unsigned int ms)
session: is a gnutls_session_t structure.

ms: is a timeout value in milliseconds

This function sets the timeout for the handshake process to the provided value. Use
an ms value of zero to disable timeout.

Note that in order for the timeout to be enforced gnutls_transport_set_pull_
timeout_function() must be set (it is set by default in most systems).

The handshake process doesn’t ensure the verification of the peer’s identity. When certifi-
cates are in use, this can be done, either after the handshake is complete, or during the
handshake if [gnutls_certificate_set_verify_function|, page 279 has been used. In both cases
the [gnutls_certificate_verify_peers2], page 287 function can be used to verify the peer’s
certificate (see Section 4.1 [Certificate authentication], page 18 for more information).

int [gnutls_certificate_verify_peers2], page 287 (gnutls_session_t session,
unsigned int * status)

6.7 Data transfer and termination

Once the handshake is complete and peer’s identity has been verified data can be exchanged.
The available functions resemble the POSIX recv and send functions. It is suggested to
use [gnutls_error_is_fatal], page 298 to check whether the error codes returned by these
functions are fatal for the protocol or can be ignored.

ssize_t gnutls_record_send (gnutls_session_t session, const void * [Function]
data, size-t data_size)
session: is a gnutls_session_t structure.

data: contains the data to send
data_size: is the length of the data

This function has the similar semantics with send() . The only difference is that
it accepts a GnuTLS session, and uses different error codes. Note that if the send
buffer is full, send () will block this function. See the send() documentation for full
information. You can replace the default push function by using gnutls_transport_
set_ptr2() with a call to send() with a MSG_DONTWAIT flag if blocking is a
problem. If the EINTR is returned by the internal push function (the default is
send ()) then GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED
or GNUTLS_E_AGAIN is returned, you must call this function again, with the same
parameters; alternatively you could provide a NULL pointer for data, and 0 for size. cf.
gnutls_record_get_direction() . The errno value EMSGSIZE maps to GNUTLS_
E_LARGE_PACKET .

Returns: The number of bytes sent, or a negative error code. The number of bytes
sent might be less than data_size . The maximum number of bytes this function
can send in a single call depends on the negotiated maximum record size.

ssize_t gnutls_record_recv (gnutls_session_t session, void * data, [Function]
size_t data_size)
session: is a gnutls_session_t structure.

Chapter 6: How to use GnuTLS in applications 124

data: the buffer that the data will be read into
data_size: the number of requested bytes

This function has the similar semantics with recv() . The only difference is that it
accepts a GnuTLS session, and uses different error codes. In the special case that
a server requests a renegotiation, the client may receive an error code of GNUTLS_E_
REHANDSHAKE . This message may be simply ignored, replied with an alert GNUTLS_
A_NO_RENEGOTIATION , or replied with a new handshake, depending on the client’s
will. If EINTR is returned by the internal push function (the default is recv()) then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_
AGAIN is returned, you must call this function again to get the data. See also gnutls_
record_get_direction() . A server may also receive GNUTLS_E_REHANDSHAKE when
a client has initiated a handshake. In that case the server can only initiate a handshake
or terminate the connection.

Returns: The number of bytes received and zero on EOF (for stream connections).
A negative error code is returned in case of an error. The number of bytes received
might be less than the requested data_size .

int gnutls_error_is_fatal (int error) [Function]
error: is a GnuTLS error code, a negative error code

If a GnuTLS function returns a negative error code you may feed that value to this
function to see if the error condition is fatal. Note that you may also want to check
the error code manually, since some non-fatal errors to the protocol (such as a warning
alert or a rehandshake request) may be fatal for your program.

This function is only useful if you are dealing with errors from the record layer or the
handshake layer.

Returns: 1 if the error code is fatal, for positive error values, 0 is returned. For
unknown error values, -1 is returned.

Although, in the TLS protocol the receive function can be called at any time, when DTLS is
used the GnuTLS receive functions must be called once a message is available for reading,
even if no data are expected. This is because in DTLS various (internal) actions may
be required due to retransmission timers. Moreover, an extended receive function is shown
below, which allows the extraction of the message’s sequence number. Due to the unreliable
nature of the protocol, this field allows distinguishing out-of-order messages.

ssize_t gnutls_record_recv_seq (gnutls_session_t session, void * [Function]
data, size_t data_size, unsigned char * seq)
session: is a gnutls_session_t structure.
data: the buffer that the data will be read into
data_size: the number of requested bytes
seq: is the packet’s 64-bit sequence number. Should have space for 8 bytes.
This function is the same as gnutls_record_recv() , except that it returns in addi-
tion to data, the sequence number of the data. This is useful in DTLS where record

packets might be received out-of-order. The returned 8-byte sequence number is an
integer in big-endian format and should be treated as a unique message identification.

Chapter 6: How to use GnuTLS in applications 125

Returns: The number of bytes received and zero on EOF. A negative error code
is returned in case of an error. The number of bytes received might be less than
data_size .

Since: 3.0

The [gnutls_record_check_pending], page 323 helper function is available to allow checking
whether data are available to be read in a GnuTLS session buffers. Note that this function
complements but does not replace select, i.e., [gnutls_record_check_pending], page 323
reports no data to be read, select should be called to check for data in the network
buffers.

size_t gnutls_record_check_pending (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function checks if there are unread data in the gnutls buffers. If the return value
is non-zero the next call to gnutls_record_recv() is guarranteed not to block.

Returns: Returns the size of the data or zero.

int [gnutls_record_get_direction], page 323 (gnutls_session_t session)

Once a TLS or DTLS session is no longer needed, it is recommended to use [gnutls_bye],
page 273 to terminate the session. That way the peer is notified securely about the intention
of termination, which allows distinguishing it from a malicious connection termination. A
session can be deinitialized with the [gnutls_deinit], page 293 function.

int gnutls_bye (gnutls_session_t session, gnutls_close_request_t how) [Function]
session: is a gnutls_session_t structure.

how: is an integer

Terminates the current TLS/SSL connection. The connection should have been initi-
ated using gnutls_handshake () . how should be one of GNUTLS_SHUT_RDWR , GNUTLS_
SHUT_WR .

In case of GNUTLS_SHUT_RDWR the TLS session gets terminated and further receives
and sends will be disallowed. If the return value is zero you may continue using
the underlying transport layer. GNUTLS_SHUT_RDWR sends an alert containing a close
request and waits for the peer to reply with the same message.

In case of GNUTLS_SHUT_WR the TLS session gets terminated and further sends will
be disallowed. In order to reuse the connection you should wait for an EOF from the
peer. GNUTLS_SHUT_WR sends an alert containing a close request.

Note that not all implementations will properly terminate a TLS connection. Some of
them, usually for performance reasons, will terminate only the underlying transport
layer, and thus not distinguishing between a malicious party prematurely terminating
the connection and normal termination.

This function may also return GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED ; cf.
gnutls_record_get_direction() .

Returns: GNUTLS_E_SUCCESS on success, or an error code, see function documentation
for entire semantics.

Chapter 6: How to use GnuTLS in applications 126

void gnutls_deinit (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function clears all buffers associated with the session . This function will
also remove session data from the session database if the session was terminated
abnormally.

6.8 Buffered data transfer

Although [gnutls_record_send], page 324 is sufficient to transmit data to the peer, when
many small chunks of data are to be transmitted it is inefficient and wastes bandwidth due
to the TLS record overhead. In that case it is preferrable to combine the small chunks
before transmission. The following functions provide that functionality.

void gnutls_record_cork (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

If called gnutls_record_send() will no longer send partial records. All queued
records will be sent when gnutls_uncork() is called, or when the maximum record
size is reached.

Since: 3.1.9

int gnutls_record_uncork (gnutls_session_t session, unsigned int [Function]
flags)
session: is a gnutls_session_t structure.
flags: Could be zero or GNUTLS_RECORD_WAIT

This resets the effect of gnutls_cork() , and flushes any pending data. If the GNUTLS_
RECORD_WAIT flag is specified then this function will block until the data is sent or
a fatal error occurs (i.e., the function will retry on GNUTLS_E_AGAIN and GNUTLS_E_
INTERRUPTED).

Returns: On success the number of transmitted data is returned, or otherwise a
negative error code.

Since: 3.1.9

6.9 Handling alerts

During a TLS connection alert messages may be exchanged by the two peers. Those mes-
sages may be fatal, meaning the connection must be terminated afterwards, or warning
when something needs to be reported to the peer, but without interrupting the session. The
error codes GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED sig-
nal those alerts when received, and may be returned by all GnuTLS functions that receive
data from the peer, being [gnutls_handshake|, page 302 and [gnutls_record_recv|, page 324.

If those error codes are received the alert and its level should be logged or reported to the
peer using the functions below.

gnutls_alert_description_t gnutls_alert_get (gnutls_session_t [Function]
session)
session: is a gnutls_session_t structure.

Chapter 6: How to use GnuTLS in applications 127

This function will return the last alert number received. This function should be called
when GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED er-
rors are returned by a gnutls function. The peer may send alerts if he encounters an
error. If no alert has been received the returned value is undefined.

Returns: the last alert received, a gnutls_alert_description_t value.

const char * gnutls_alert_get_name (gnutls_alert_description_t [Function]
alert)
alert: is an alert number.

This function will return a string that describes the given alert number, or NULL . See
gnutls_alert_get() .

Returns: string corresponding to gnutls_alert_description_t value.

The peer may also be warned or notified of a fatal issue by using one of the functions below.
All the available alerts are listed in [The Alert Protocol], page 8.

int gnutls_alert_send (gnutls_session_t session, gnutls_alert_level_t [Function]
level, gnutls_alert_description_t desc)
session: is a gnutls_session_t structure.

level: is the level of the alert
desc: is the alert description

This function will send an alert to the peer in order to inform him of something
important (eg. his Certificate could not be verified). If the alert level is Fatal then
the peer is expected to close the connection, otherwise he may ignore the alert and
continue.

The error code of the underlying record send function will be returned, so you may
also receive GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN as well.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

int gnutls_error_to_alert (int err, int * level) [Function]
err: is a negative integer

level: the alert level will be stored there

Get an alert depending on the error code returned by a gnutls function. All alerts
sent by this function should be considered fatal. The only exception is when err is
GNUTLS_E_REHANDSHAKE , where a warning alert should be sent to the peer indicating
that no renegotiation will be performed.

If there is no mapping to a valid alert the alert to indicate internal error is returned.

Returns: the alert code to use for a particular error code.

Chapter 6: How to use GnuTLS in applications 128

6.10 Priority strings

In order to specify cipher suite preferences on a TLS session there are priority functions
that accept a string specifying the enabled for the handshake algorithms. That string may
contain a single initial keyword such as in Table 6.2 and may be followed by additional
algorithm or special keywords.

Chapter 6: How to use GnuTLS in applications 129

int [gnutls_priority_set_direct], page 317 (gnutls_session_t session, const
char * priorities, const char ** err_pos)

int [gnutls_priority_set], page 317 (gnutls_session_t session,
gnutls_priority_t priority)

Keyword Description

PERFORMANCE All the known to be secure ciphersuites are enabled, limited
to 128 bit ciphers and sorted by terms of speed performance.
The message authenticity security level is of 64 bits or more.

NORMAL Means all the known to be secure ciphersuites. The ciphers
are sorted by security margin, although the 256-bit ciphers are
included as a fallback only. The message authenticity security
level is of 64 bits or more.

PFES Means all the known to be secure ciphersuites that support
perfect forward secrecy. The ciphers are sorted by security
margin, although the 256-bit ciphers are included as a fallback
only. The message authenticity security level is of 64 bits or
more. This option is available since 3.2.4 or later.

SECURE128 Means all known to be secure ciphersuites that offer a security
level 128-bit or more and a message authenticity security level
of 80 bits or more.

SECURE192 Means all the known to be secure ciphersuites that offer a
security level 192-bit or more and a message authenticity se-
curity level of 128 bits or more.

SECURE256 Currently alias for SECURE192.

SUITEB128 Means all the NSA Suite B cryptography (RFC5430) cipher-
suites with an 128 bit security level.

SUITEB192 Means all the NSA Suite B cryptography (RFC5430) cipher-
suites with an 192 bit security level.

EXPORT Means all ciphersuites are enabled, including the low-security
40 bit ciphers.

NONE Means nothing is enabled. This disables even protocols and

compression methods. It should be followed by the algorithms
to be enabled.

Table 6.2: Supported initial keywords.

Chapter 6: How to use GnuTLS in applications 130

Unless the initial keyword is "NONE" the defaults (in preference order) are for TLS proto-
cols TLS 1.2, TLS1.1, TLS1.0, SSL3.0; for compression NULL; for certificate types X.509.
In key exchange algorithms when in NORMAL or SECURE levels the perfect forward se-
crecy algorithms take precedence of the other protocols. In all cases all the supported key
exchange algorithms are enabled®.

Note that the SECURE levels distinguish between overall security level and message au-
thenticity security level. That is because the message authenticity security level requires the
adversary to break the algorithms at real-time during the protocol run, whilst the overall
security level refers to off-line adversaries (e.g. adversaries breaking the ciphertext years
after it was captured).

The NONE keyword, if used, must followed by keywords specifying the algorithms and
protocols to be enabled. The other initial keywords do not require, but may be followed
by such keywords. All level keywords can be combined, and for example a level of "SE-
CURE256:+SECURE128" is allowed.

The order with which every algorithm or protocol is specified is significant. Algorithms
specified before others will take precedence. The supported algorithms and protocols are
shown in Table 6.3. To avoid collisions in order to specify a compression algorithm in
the priority string you have to prefix it with "COMP-", protocol versions with "VERS-
" signature algorithms with "SIGN-" and certificate types with "CTYPE-". All other
algorithms don’t need a prefix. Each specified keyword can be prefixed with any of the
following characters.

(A Bl 9

I or ’- appended with an algorithm will remove this algorithm.

Mt appended with an algorithm will add this algorithm.

3 Except for the RSA-EXPORT which is only enabled in EXPORT level.

Chapter 6: How to use GnuTLS in applications

Type
Ciphers

Key exchange

MAC

Compression
algorithms
TLS versions

Signature
algorithms

Elliptic curves

Keywords

AES-128-CBC, AES-256-CBC, AES-128-GCM, CAMELLIA-
128-CBC, CAMELLIA-256-CBC, ARCFOUR-128, 3DES-
CBC ARCFOUR-40. Catch all name is CIPHER-ALL which
will add all the algorithms from NORMAL priority.

RSA, DHE-RSA, DHE-DSS, SRP, SRP-RSA, SRP-DSS,
PSK, DHE-PSK, ECDHE-RSA, ANON-ECDH, ANON-DH,
RSA-EXPORT. The Catch all name is KX-ALL which will
add all the algorithms from NORMAL priority.

MD5, SHA1, SHA256, AEAD (used with GCM ciphers only).
All algorithms from NORMAL priority can be accessed with
MAC-ALL.

COMP-NULL, COMP-DEFLATE. Catch all is COMP-ALL.

VERS-SSL3.0, VERS-TLS1.0, VERS-TLS1.1, VERS-TLS1.2,
VERS-DTLS1.0. Catch all is VERS-TLS-ALL and VERS-
DTLS-ALL.

SIGN-RSA-SHA1, SIGN-RSA-SHA224, SIGN-RSA-SHA256,
SIGN-RSA-SHA384, SIGN-RSA-SHA512, SIGN-DSA-SHA1,
SIGN-DSA-SHA224, SIGN-DSA-SHA256, SIGN-RSA-MD5.
Catch all is SIGN-ALL. This is only valid for TLS 1.2 and
later.

CURVE-SECP192R1, CURVE-SECP224R1, CURVE-
SECP256R1, CURVE-SECP384R1, CURVE-SECP521R1.
Catch all is CURVE-ALL.

Table 6.3: The supported algorithm keywords in priority strings.

Note that the DHE key exchange methods are generally slower? than their elliptic curves
counterpart (ECDHE). Moreover the plain Diffie-Hellman key exchange requires parameters
to be generated and associated with a credentials structure by the server (see Section 6.12.3

[Parameter generation|, page 141).

The available special keywords are shown in Table 6.4 and Table 6.5.

It depends on the group used. Primes with lesser bits are always faster, but also easier to break. See

Section 6.11 [Selecting cryptographic key sizes|, page 134 for the acceptable security levels.

Chapter 6: How to use GnuTLS in applications

Keyword

%COMPAT

%NO_EXTENSIONS

%SERVER_PRECEDENCE

%SSL3_RECORD_VERSION

%LATEST_RECORD_VERSION

Table 6.4: Special priority string keywords.

Description

will enable compatibility mode. It
might mean that violations of the pro-
tocols are allowed as long as maxi-
mum compatibility with problematic
clients and servers is achieved. More
specifically this string would disable
TLS record random padding and toler-
ate packets over the maximum allowed
TLS record.

will prevent the sending of any TLS ex-
tensions in client side. Note that TLS
1.2 requires extensions to be used, as
well as safe renegotiation thus this op-
tion must be used with care.

The ciphersuite will be selected accord-
ing to server priorities and not the
client’s.

will use SSL3.0 record version in client
hello. This is the default.

will use the latest TLS version record
version in client hello.

132

Chapter 6: How to use GnuTLS in applications

Keyword

%STATELESS_.COMPRESSION

%DISABLE_SAFE_RENEGOTIATION

%UNSAFE_RENEGOTIATION

%PARTIAL_RENEGOTIATION

%SAFE_RENEGOTIATION

%VERIFY_ALLOW_SIGN_RSA_MD5

%VERIFY_DISABLE_CRL_CHECKS

%VERIFY_ALLOW_X509_V1_CA_CRT

Table 6.5: More priority string keywords.

Description

will disable keeping state across
records when compressing. This may
help to mitigate attacks when com-
pression is used but an attacker is in
control of input data. This has to
be used only when the data that are
possibly controlled by an attacker are
placed in separate records.

will completely disable safe renegotia-
tion completely. Do not use unless you
know what you are doing.

handshakes and
re-handshakes without the safe
renegotiation extension. Note that
for clients this mode is insecure
(you may be under attack), and for
servers it will allow insecure clients
to connect (which could be fooled by
an attacker). Do not use unless you
know what you are doing and want
maximum compatibility.

will allow

will allow initial handshakes to pro-
ceed, but not re-handshakes. This
leaves the client vulnerable to attack,
and servers will be compatible with
non-upgraded clients for initial hand-
shakes. This is currently the default
for clients and servers, for compatibil-
ity reasons.

will enforce safe renegotiation. Clients
and servers will refuse to talk to an
insecure peer. Currently this causes
interoperability problems, but is re-
quired for full protection.

will allow RSA-MD?5 signatures in cer-
tificate chains.

will disable CRL or OCSP checks in
the verification of the certificate chain.

will allow V1 CAs in chains.

133

Chapter 6: How to use GnuTLS in applications 134

Finally the ciphersuites enabled by any priority string can be listed using the gnutls-
cli application (see Section 9.1 [gnutls-cli Invocation], page 231), or by using the priority
functions as in Section 7.4.3 [Listing the ciphersuites in a priority string], page 219.

Example priority strings are:

The default priority without the HMAC-MD5:
"NORMAL : -MD5"

Specifying RSA with AES-128-CBC:
"NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-ALL:+COMP-NULL"

Specifying the defaults except ARCFOUR-128:
"NORMAL: -ARCFOUR-128"

Enabling the 128-bit secure ciphers, while disabling SSL 3.0 and enabling compressic
"SECURE128:-VERS-SSL3.0:+COMP-DEFLATE"

Enabling the 128-bit and 192-bit secure ciphers, while disabling all TLS versions
except TLS 1.2:
"SECURE128:+SECURE192: -VERS-TLS-ALL:+VERS-TLS1.2"

6.11 Selecting cryptographic key sizes

Because many algorithms are involved in TLS, it is not easy to set a consistent security level.
For this reason in Table 6.6 we present some correspondence between key sizes of symmetric
algorithms and public key algorithms based on [ECRYPT]. Those can be used to generate
certificates with appropriate key sizes as well as select parameters for Diffie-Hellman and
SRP authentication.

Chapter 6: How to use GnuTLS in applications 135

Security RSA, ECC Security Description
bits DH and key parameter
SRP size
param-
eter
size
<72 <1008 <160 INSECURE Considered to be insecure
72 1008 160 WEAK Short term protec-
tion against small
organizations
80 1248 160 LOow Very short term protection

against agencies

96 1776 192 LEGACY Legacy standard level
112 2432 224 NORMAL Medium-term protection
128 3248 256 HIGH Long term protection
256 15424 512 ULTRA Foreseeable future

Table 6.6: Key sizes and security parameters.

The first column provides a security parameter in a number of bits. This gives an indication
of the number of combinations to be tried by an adversary to brute force a key. For example
to test all possible keys in a 112 bit security parameter 2''? combinations have to be tried.
For today’s technology this is infeasible. The next two columns correlate the security
parameter with actual bit sizes of parameters for DH, RSA, SRP and ECC algorithms. A
mapping to gnutls_sec_param_t value is given for each security parameter, on the next
column, and finally a brief description of the level.

Note, however, that the values suggested here are nothing more than an educated guess
that is valid today. There are no guarantees that an algorithm will remain unbreakable or
that these values will remain constant in time. There could be scientific breakthroughs that
cannot be predicted or total failure of the current public key systems by quantum computers.
On the other hand though the cryptosystems used in TLS are selected in a conservative
way and such catastrophic breakthroughs or failures are believed to be unlikely. The NIST
publication SP 800-57 [NISTSP80057] contains a similar table.

When using GnuTLS and a decision on bit sizes for a public key algorithm is required, use
of the following functions is recommended:

unsigned int gnutls_sec_param_to_pk_bits [Function]
(gnutls_pk_algorithm_t algo, gnutls_sec_param_t param)
algo: is a public key algorithm

Chapter 6: How to use GnuTLS in applications 136

param: is a security parameter

When generating private and public key pairs a difficult question is which size of
"bits" the modulus will be in RSA and the group size in DSA. The easy answer
is 1024, which is also wrong. This function will convert a human understandable
security parameter to an appropriate size for the specific algorithm.

Returns: The number of bits, or (0).

Since: 2.12.0

gnutls_sec_param_t gnutls_pk_bits_to_sec_param [Function]
(gnutls_pk_algorithm_t algo, unsigned int bits)
algo: is a public key algorithm
bits: is the number of bits

This is the inverse of gnutls_sec_param_to_pk_bits() . Given an algorithm and
the number of bits, it will return the security parameter. This is a rough indication.

Returns: The security parameter.
Since: 2.12.0

Those functions will convert a human understandable security parameter of gnutls_sec_
param_t type, to a number of bits suitable for a public key algorithm.

const char * [gnutls_sec_param_get_name], page 327 (gnutls_sec_param_t param)

The following functions will set the minimum acceptable group size for Diffie-Hellman and
SRP authentication.

void [gnutls_dh_set_prime_bits], page 297 (gnutls_session_t session, unsigned
int bits)

void [gnutls_srp_set_prime_bits], page 338 (gnutls_session_t session,
unsigned int bits)

6.12 Advanced topics

6.12.1 Session resumption

Client side

To reduce time and roundtrips spent in a handshake the client can request session resump-
tion from a server that previously shared a session with. For that the client has to retrieve
and store the session parameters. Before establishing a new session to the same server the
parameters must be re-associated with the GnuTLS session using [gnutls_session_set_datal,
page 332.

int [gnutls_session_get_data2], page 330 (gnutls_session_t session,
gnutls_datum_t * data)

int [gnutls_session_get_id2], page 330 (gnutls_session_t session,
gnutls_datum_t * session_id)

int [gnutls_session_set_datal, page 332 (gnutls_session_t session, const void
* session_data, size_t session_data_size)

Keep in mind that sessions will be expired after some time, depending on the server, and
a server may choose not to resume a session even when requested to. The expiration is to

Chapter 6: How to use GnuTLS in applications 137

prevent temporal session keys from becoming long-term keys. Also note that as a client you
must enable, using the priority functions, at least the algorithms used in the last session.

int gnutls_session_is_resumed (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

Check whether session is resumed or not.

Returns: non zero if this session is resumed, or a zero if this is a new session.

Server side

In order to support resumption a server can store the session security parameters in a local
database or by using session tickets (see Section 3.6.3 [Session tickets|, page 11) to delegate
storage to the client. Because session tickets might not be supported by all clients, servers
could combine the two methods.

A storing server needs to specify callback functions to store, retrieve and delete session data.
These can be registered with the functions below. The stored sessions in the database can
be checked using [gnutls_db_check_entry|, page 291 for expiration.

void [gnutls_db_set_retrieve_function], page 293 (gnutls_session_t session,
gnutls_db_retr_func retr_func)

void [gnutls_db_set_store_function], page 293 (gnutls_session_t session,
gnutls_db_store_func store_func)

void [gnutls_db_set_ptr], page 292 (gnutls_session_t session, void * ptr)
void [gnutls_db_set_remove_function], page 292 (gnutls_session_t session,
gnutls_db_remove_func rem_func)

int [gnutls_db_check_entry], page 291 (gnutls_session_t session,
gnutls_datum_t session_entry)

A server utilizing tickets should generate ticket encryption and authentication keys using
[gnutls_session_ticket_key_generate|, page 333. Those keys should be associated with the
GnuTLS session using [gnutls_session_ticket_enable_server|, page 333.

int gnutls_session_ticket_enable_server (gnutls_session_t [Function]
session, const gnutls_datum_t * key)
session: is a gnutls_session_t structure.

key: key to encrypt session parameters.

Request that the server should attempt session resumption using SessionTicket. key
must be initialized with gnutls_session_ticket_key_generate() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.
Since: 2.10.0

int gnutls_session_ticket_key_generate (gnutls_datum_t * key) [Function]
key: is a pointer to a gnutls_datum_t which will contain a newly created key.

Generate a random key to encrypt security parameters within SessionTicket.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.
Since: 2.10.0

Chapter 6: How to use GnuTLS in applications 138

int gnutls_session_resumption_requested (gnutls_session_t [Function]
session)
session: is a gnutls_session_t structure.
Check whether the client has asked for session resumption. This function is valid only
on server side.

Returns: non zero if session resumption was asked, or a zero if not.

A server enabling both session tickets and a storage for session data would use session tickets
when clients support it and the storage otherwise.

6.12.2 Certificate verification

In this section the functionality for additional certificate verification methods is listed. These
methods are intended to be used in addition to normal PKI verification, in order to reduce
the risk of a compromised CA being undetected.

6.12.2.1 Trust on first use

The GnuTLS library includes functionlity to use an SSH-like trust on first use authentica-
tion. The available functions to store and verify public keys are listed below.

int gnutls_verify_stored_pubkey (const char* db_name, [Function]

gnutls_tdb_t tdb, const char* host, const char* service,
gnutls_certificate_type_t cert_type, const gnutls_datum_t * cert, unsigned
int flags)

db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert_type: The type of the certificate

cert: The raw (der) data of the certificate

flags: should be 0.

This function will try to verify the provided certificate using a list of stored public
keys. The service field if non-NULL should be a port number.

The retrieve variable if non-null specifies a custom backend for the retrieval of
entries. If it is NULL then the default file backend will be used. In POSIX-like
systems the file backend uses the $HOME/.gnutls/known_hosts file.

Note that if the custom storage backend is provided the retrieval function should
return GNUTLS_E_CERTIFICATE_KEY_MISMATCH if the host/service pair is found but
key doesn’t match, GNUTLS_E_NO_CERTIFICATE_FOUND if no such host/service with
the given key is found, and 0 if it was found. The storage function should return 0
on success.

Returns: If no associated public key is found then GNUTLS_E_NO_CERTIFICATE_FOUND
will be returned. If a key is found but does not match GNUTLS_E_CERTIFICATE_KEY_
MISMATCH is returned. On success, GNUTLS_E_SUCCESS (0) is returned, or a negative
error value on other errors.

Since: 3.0

Chapter 6: How to use GnuTLS in applications 139

int gnutls_store_pubkey (const char* db_name, gnutls_tdb_t tdb, [Function]

const char* host, const char* service, gnutls_certificate_type_t cert_type,
const gnutls_datum_t * cert, time_t expiration, unsigned int flags)

db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert_type: The type of the certificate

cert: The data of the certificate

expiration: The expiration time (use 0 to disable expiration)

flags: should be 0.

This function will store the provided certificate to the list of stored public keys. The
key will be considered valid until the provided expiration time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

In addition to the above the [gnutls_store_commitment], page 342 can be used to implement
a key-pinning architecture as in [KEYPIN]. This provides a way for web server to commit
on a public key that is not yet active.

int gnutls_store_commitment (const char® db_name, gnutls_tdb_t [Function]

tdb, const char* host, const char* service, gnutls_digest_algorithm_t
hash_algo, const gnutls_datum_t* hash, time_t expiration, unsigned int
flags)

db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

hash_algo: The hash algorithm type

hash: The raw hash

expiration: The expiration time (use 0 to disable expiration)

flags: should be 0.

This function will store the provided hash commitment to the list of stored public keys.
The key with the given hash will be considered valid until the provided expiration
time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Note that this function is not thread safe with the default backend.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

Chapter 6: How to use GnuTLS in applications 140

The storage and verification functions may be used with the default text file based back-end,
or another back-end may be specified. That should contain storage and retrieval functions
and specified as below.

int [gnutls_tdb_init], page 344 (gnutls_tdb_t* tdb)

void [gnutls_tdb_deinit], page 344 (gnutls_tdb_t tdb)

void [gnutls_tdb_set_verify_func], page 345 (gnutls_tdb_t tdb,
gnutls_tdb_verify_func verify)

void [gnutls_tdb_set_store_func], page 344 (gnutls_tdb_t tdb,
gnutls_tdb_store_func store)

void [gnutls_tdb_set_store_commitment_func], page 344 (gnutls_tdb_t tdb,
gnutls_tdb_store_commitment_func cstore)

6.12.2.2 DANE verification
Since the DANE library is not included in GnuTLS it requires programs to be linked against
it. This can be achieved with the following commands.

gcc -o foo foo.c ‘pkg-config gnutls-dane --cflags --libs®

When a program uses the GNU autoconf system, then the following line or similar can be
used to detect the presence of the library.

PKG_CHECK_MODULES ([LIBDANE], [gnutls-dane >= 3.0.0])

AC_SUBST ([LIBDANE_CFLAGS])
AC_SUBST([LIBDANE_LIBS])

The high level functionality provided by the DANE library is shown below.

int dane_verify_crt (dane_state_t s, const gnutls_.datum_t * chain, [Function]
unsigned chain_size, gnutls_certificate_type_t chain_type, const char *
hostname, const char* proto, unsigned int port, unsigned int sflags,
unsigned int vflags, unsigned int * verify)
s: A DANE state structure (may be NULL)

chain: A certificate chain

chain_size: The size of the chain

chain_type: The type of the certificate chain

hostname: The hostname associated with the chain

proto: The protocol of the service connecting (e.g. tcp)

port: The port of the service connecting (e.g. 443)

sflags: Flags for the the initialization of s (if NULL)

vflags: Verification flags; an OR’ed list of dane_verify_flags_t .
verify: An OR’ed list of dane_verify_status_t .

This function will verify the given certificate chain against the CA constrains and/or
the certificate available via DANE. If no information via DANE can be obtained the
flag DANE_VERIFY_NO_DANE_INFO is set. If a DNSSEC signature is not available for
the DANE record then the verify flag DANE_VERIFY_NO_DNSSEC_DATA is set.

Note that the CA constraint only applies for the directly certifying CA and does not
account for long CA chains.

Chapter 6: How to use GnuTLS in applications 141

Due to the many possible options of DANE, there is no single threat model countered.
When notifying the user about DANE verification results it may be better to mention:
DANE verification did not reject the certificate, rather than mentioning a successful
DANE verication.

If the q parameter is provided it will be used for caching entries.

Returns: On success, DANE_E_SUCCESS (0) is returned, otherwise a negative error
value.

int [dane_verify_session_crt], page 509 (dane_state_t s, gnutls_session_t
session, const char * hostname, const char* proto, unsigned int port, unsigned
int sflags, unsigned int vflags, unsigned int * verify)

const char * [dane_strerror], page 507 (int error)

Note that the dane_state_t structure that is accepted by both verification functions is
optional. It is required when many queries are performed to facilitate caching. The following
flags are returned by the verify functions to indicate the status of the verification.

DANE_VERIFY_CA_CONSTRAINTS_VIOLATED
The CA constrains was violated.

DANE_VERIFY_CERT_DIFFERS
The certificate obtained via DNS differs.

DANE_VERIFY_NO_DANE_INFO
No DANE data were found in the DNS record.

Figure 6.2: The DANE verification status flags.

In order to generate a DANE TLSA entry to use in a DNS server you may use danetool
(see Section 4.2.7 [danetool Invocation], page 67).

6.12.3 Parameter generation

Several TLS ciphersuites require additional parameters that need to be generated
or provided by the application. The Diffie-Hellman based ciphersuites (ANON-DH
or DHE), require the group parameters to be provided. Those can either be be
generated on the fly using [gnutls_dh_params_generate2|, page 296 or imported from
pregenerated data using [gnutls_dh_params_import_pkes3|, page 296. The parameters
can be used in a TLS session by calling [gnutls_certificate_set_dh_params|, page 277 or
[gnutls_anon_set_server_dh_params], page 272 for anonymous sessions.

int [gnutls_dh_params_generate2], page 296 (gnutls_dh_params_t params,
unsigned int bits)

int [gnutls_dh_params_import_pkcs3], page 296 (gnutls_dh_params_t params,
const gnutls_datum_t * pkcs3_params, gnutls_x509_crt_fmt_t format)

void [gnutls_certificate_set_dh_params], page 277
(gnutls_certificate_credentials_t res, gnutls_dh_params_t dh_params)
void [gnutls_anon_set_server_dh_params], page 272
(gnutls_anon_server_credentials_t res, gnutls_dh_params_t dh_params)

Due to the time-consuming calculations required for the generation of Diffie-Hellman pa-
rameters we suggest against performing generation of them within an application. The

Chapter 6: How to use GnuTLS in applications 142

certtool tool can be used to generate or export known safe values that can be stored in
code or in a configuration file to provide the ability to replace. We also recommend the
usage of [gnutls_sec_param_to_pk_bits], page 327 (see Section 6.11 [Selecting cryptographic
key sizes|, page 134) to determine the bit size of the generated parameters.

Note that the information stored in the generated PKCS #3 structure changed with
GnuTLS 3.0.9. Since that version the privateValueLength member of the structure is
set, allowing the server utilizing the parameters to use keys of the size of the security
parameter. This provides better performance in key exchange.

The ciphersuites that involve the RSA-EXPORT key exchange require additional param-
eters. Those ciphersuites are rarely used today because they are by design insecure, thus
if you have no requirement for them, the rest of this section can be skipped. The RSA-
EXPORT key exchange requires 512-bit RSA keys to be generated. It is recommended
those parameters to be refreshed (regenerated) in short intervals. The following functions
can be used for these parameters.

int [gnutls_rsa_params_generate2], page 519 (gnutls_rsa_params_t params,
unsigned int bits)

void [gnutls_certificate_set_rsa_export_params], page 515
(gnutls_certificate_credentials_t res, gnutls_rsa_params_t rsa_params)

int [gnutls_rsa_params_import_pkcsl], page 519 (gnutls_rsa_params_t params,
const gnutls_datum_t * pkcsl_params, gnutls_x509_crt_fmt_t format)

int [gnutls_rsa_params_export_pkcsl], page 518 (gnutls_rsa_params_t params,
gnutls_xb09_crt_fmt_t format, unsigned char * params_data, size_t *
params_data_size)

To allow renewal of the parameters within an application without accessing the credentials,
which are a shared structure, an alternative interface is available using a callback function.

void gnutls_certificate_set_params_function [Function]
(gnutls_certificate_credentials_t res, gnutls_params_function * func)
res: is a gnutls_certificate_credentials_t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for certificate authentication. The callback should return GNUTLS_
E_SUCCESS (0) on success.

6.12.4 Keying material exporters

The TLS PRF can be used by other protocols to derive keys based on the TLS master secret.
The API to use is [gnutls_prf], page 313. The function needs to be provided with the label
in the parameter label, and the extra data to mix in the extra parameter. Depending
on whether you want to mix in the client or server random data first, you can set the
server_random_first parameter.

For example, after establishing a TLS session using [gnutls_handshake|, page 302, you can
invoke the TLS PRF with this call:

#define MYLABEL "EXPORTER-FOO"
#define MYCONTEXT "some context data"
char out[32];

Chapter 6: How to use GnuTLS in applications 143

rc = gnutls_prf (session, strlen (MYLABEL), MYLABEL, O,
strlen (MYCONTEXT), MYCONTEXT, 32, out);

If you don’t want to mix in the client/server random, there is a low-level TLS PRF interface
called [gnutls_prf_raw|, page 314.

6.12.5 Channel bindings

In user authentication protocols (e.g., EAP or SASL mechanisms) it is useful to have a
unique string that identifies the secure channel that is used, to bind together the user
authentication with the secure channel. This can protect against man-in-the-middle attacks
in some situations. That unique string is called a “channel binding”. For background and
discussion see [RFC5056].

In GnuTLS you can extract a channel binding using the [gnutls_session_channel_binding],
page 329 function. Currently only the type GNUTLS_CB_TLS_UNIQUE is supported, which
corresponds to the tls-unique channel binding for TLS defined in [RFC5929].

The following example describes how to print the channel binding data. Note that it must
be run after a successful TLS handshake.

{
gnutls_datum_t cb;
int rc;

rc = gnutls_session_channel_binding (session,
GNUTLS_CB_TLS_UNIQUE,
&cb) ;
if (ro)
fprintf (stderr, "Channel binding error: %s\n",
gnutls_strerror (rc));
else
{
size_t 1i;
printf ("- Channel binding ’tls-unique’: ");
for (i = 0; 1 < cb.size; i++)
printf ("%02x", cb.datalil);
printf ("\n");

}
6.12.6 Interoperability

The TLS protocols support many ciphersuites, extensions and version numbers. As a result,
few implementations are not able to properly interoperate once faced with extensions or
version protocols they do not support and understand. The TLS protocol allows for a
graceful downgrade to the commonly supported options, but practice shows it is not always
implemented correctly.

Because there is no way to achieve maximum interoperability with broken peers without
sacrificing security, GnuTLS ignores such peers by default. This might not be acceptable
in cases where maximum compatibility is required. Thus we allow enabling compatibility

Chapter 6: How to use GnuTLS in applications 144

with broken peers using priority strings (see Section 6.10 [Priority Strings|, page 128). A
conservative priority string that would disable certain TLS protocol options that are known
to cause compatibility problems, is shown below.

NORMAL : %,COMPAT

For broken peers that do not tolerate TLS version numbers over TLS 1.0 another priority
string is:
NORMAL: -VERS-TLS-ALL:+VERS-TLS1.0:+VERS-SSL3.0: %COMPAT

This priority string will in addition to above, only enable SSL 3.0 and TLS 1.0 as protocols.
Note however that there are known attacks against those protocol versions, especially over
the CBC-mode ciphersuites. To mitigate them another priority string that only allows the
stream cipher ARCFOUR is below.

NORMAL: -VERS-TLS-ALL:+VERS-TLS1.0:+VERS-SSL3.0:-CIPHER-ALL: +ARCFOUR-128:%COMPAT

6.12.7 Compatibility with the OpenSSL library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the
OpenSSL library is included in the gnutls-openssl library. This compatibility layer is
not complete and it is not intended to completely re-implement the OpenSSL API with
GnuTLS. It only provides limited source-level compatibility.

The prototypes for the compatibility functions are in the gnutls/openssl.h header file.
The limitations imposed by the compatibility layer include:

e FError handling is not thread safe.

Chapter 7: GnuTLS application examples 145

7 GnuTLS application examples

In this chapter several examples of real-world use cases are listed. The examples are sim-
plified to promote readability and contain little or no error checking.

7.1 Client examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that some of
the examples require functions implemented by another example.

7.1.1 Simple client example with X.509 certificate support

Let’s assume now that we want to create a TCP client which communicates with servers
that use X.509 or OpenPGP certificate authentication. The following client is a very simple
TLS client, which uses the high level verification functions for certificates, but does not
support session resumption.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include "examples.h"

/* A very basic TLS client, with X.509 authentication and server certificate
* verification. Note that error checking for missing files etc. 1is omitted
* for simplicity.

*/

#define MAX_BUF 1024
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);
extern void tcp_close (int sd);
static int _verify_certificate_callback (gnutls_session_t session);

int main (void)

{
int ret, sd, ii;
gnutls_session_t session;
char buffer[MAX_BUF + 1];
const char *err;

Chapter 7: GnuTLS application examples 146

gnutls_certificate_credentials_t xcred;
gnutls_global_init ();

/* X509 stuff */
gnutls_certificate_allocate_credentials (&xcred);

/* sets the trusted cas file

*/
gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);
gnutls_certificate_set_verify_function (xcred, _verify_certificate_callback);

/* If client holds a certificate it can be set using the following:
*

gnutls_certificate_set_x509_key_file (xcred,
"cert.pem", "key.pem",
GNUTLS_X509_FMT_PEM) ;
*/

/* Initialize TLS session
x/
gnutls_init (&session, GNUTLS_CLIENT);

gnutls_session_set_ptr (session, (void *) "my_host_name");

gnutls_server_name_set (session, GNUTLS_NAME_DNS, "my_host_name",
strlen("my_host_name"));

/* Use default priorities */
ret = gnutls_priority_set_direct (session, "NORMAL", &err);
if (ret < 0)

{
if (ret == GNUTLS_E_INVALID_REQUEST)
{
fprintf (stderr, "Syntax error at: Y%s\n", err);
}
exit (1);
}

/* put the x509 credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/

sd = tcp_connect Q);

Chapter 7: GnuTLS application examples 147

gnutls_transport_set_int (session, sd);
gnutls_handshake_set_timeout (session, GNUTLS_DEFAULT_HANDSHAKE_TIMEQUT) ;

/* Perform the TLS handshake

*/
do
{
ret = gnutls_handshake (session);
}
while (ret < 0 && gnutls_error_is_fatal (ret) == 0);

if (ret < 0)
{
fprintf (stderr, "***x Handshake failed\n");
gnutls_perror (ret);
goto end;

else

{

char* desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: %s\n", desc);
gnutls_free(desc);

}
gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)

{
printf ("- Peer has closed the TLS connection\n");
goto end;
}
else if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{

fprintf (stderr, "*** Warning: %s\n", gnutls_strerror (ret));

¥
else if (ret < 0)
{
fprintf (stderr, "#**x Error: ¥%s\n", gnutls_strerror (ret));
goto end;

3

if (ret > 0)
{
printf ("- Received %d bytes: ", ret);

Chapter 7: GnuTLS application examples

for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);
}
fputs ("\n", stdout);
}

gnutls_bye (session, GNUTLS_SHUT_RDWR) ;

end:

/

tcp_close (sd);

gnutls_deinit (session);
gnutls_certificate_free_credentials (xcred);
gnutls_global_deinit ();

return O;

* This function will verify the peer’s certificate, and check

* if the hostname matches, as well as the activation, expiration dates.

*/

static int
_verify_certificate_callback (gnutls_session_t session)

{

unsigned int status;
int ret, type;

const char *hostname;
gnutls_datum_t out;

/* read hostname */
hostname = gnutls_session_get_ptr (session);

/* This verification function uses the trusted CAs in the credentials

* structure. So you must have installed one or more CA certificates.

*/
ret = gnutls_certificate_verify_peers3 (session, hostname, &status);
if (ret < 0)
{
printf ("Error\n");
return GNUTLS_E_CERTIFICATE_ERROR;
}

type = gnutls_certificate_type_get (session);

148

Chapter 7: GnuTLS application examples 149

ret = gnutls_certificate_verification_status_print(status, type, &out, 0);
if (ret < 0)
{
printf ("Error\n");
return GNUTLS_E_CERTIFICATE_ERROR;
}

printf ("%s", out.data);
gnutls_free(out.data);

if (status != 0) /* Certificate is not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;

/* notify gnutls to continue handshake normally */
return O;

7.1.2 Simple client example with SSH-style certificate verification

This is an alternative verification function that will use the X.509 certificate authorities for
verification, but also assume an trust on first use (SSH-like) authentication system. That is
the user is prompted on unknown public keys and known public keys are considered trusted.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include "examples.h"

/* This function will verify the peer’s certificate, check
* 1f the hostname matches. In addition it will perform an

* SSH-style authentication, where ultimately trusted keys
* are only the keys that have been seen before.

*/

int

_ssh_verify_certificate_callback (gnutls_session_t session)
{

unsigned int status;

Chapter 7: GnuTLS application examples 150

const gnutls_datum_t *cert_list;
unsigned int cert_list_size;

int ret, type;

gnutls_datum_t out;

const char *hostname;

/* read hostname */
hostname = gnutls_session_get_ptr (session);

/* This verification function uses the trusted CAs in the credentials
* structure. So you must have installed one or more CA certificates.
*/

ret = gnutls_certificate_verify_peers3 (session, hostname, &status);

if (ret < 0)

{

printf ("Error\n");

return GNUTLS_E_CERTIFICATE_ERROR;
X

type = gnutls_certificate_type_get (session);

ret = gnutls_certificate_verification_status_print(status, type, &out, 0);
if (ret < 0)
{
printf ("Error\n");
return GNUTLS_E_CERTIFICATE_ERROR;
+

printf ("%s", out.data);
gnutls_free(out.data);

if (status !'= 0) /* Certificate is not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;

/* Do SSH verification */
cert_list = gnutls_certificate_get_peers (session, &cert_list_size);
if (cert_list == NULL)
{
printf ("No certificate was found!\n");
return GNUTLS_E_CERTIFICATE_ERROR;
X

/* service may be obtained alternatively using getservbyport() x/

ret = gnutls_verify_stored_pubkey(NULL, NULL, hostname, "https",
type, &cert_list[0], 0);

if (ret == GNUTLS_E_NO_CERTIFICATE_FOUND)

Chapter 7: GnuTLS application examples 151

{
printf ("Host %s is not known.", hostname);
if (status == 0)

printf ("Its certificate is valid for %s.\n", hostname);
/* the certificate must be printed and user must be asked on
* whether it is trustworthy. --see gnutls_x509_crt_print() */

/* if not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;

+

else if (ret == GNUTLS_E_CERTIFICATE_KEY_MISMATCH)

{
printf ("Warning: host %s is known but has another key associated.", hostname);
printf ("It might be that the server has multiple keys, or you are under attack\n");
if (status == 0)

printf("Its certificate is valid for %s.\n", hostname);

/* the certificate must be printed and user must be asked on
* whether it is trustworthy. --see gnutls_x509_crt_print() */
/* if not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;

}

else if (ret < 0)
{

printf ("gnutls_verify_stored_pubkey: %s\n", gnutls_strerror(ret));
return ret;

}

/* user trusts the key -> store it */
if (ret !'= 0)
{
ret = gnutls_store_pubkey(NULL, NULL, hostname, "https",
type, &cert_list[0], 0, 0);
if (ret < 0)
printf ("gnutls_store_pubkey: %s\n", gnutls_strerror(ret));
¥

/* notify gnutls to continue handshake normally */
return O;

Chapter 7: GnuTLS application examples 152

7.1.3 Simple client example with anonymous authentication

The simplest client using TLS is the one that doesn’t do any authentication. This means
no external certificates or passwords are needed to set up the connection. As could be
expected, the connection is vulnerable to man-in-the-middle (active or redirection) attacks.
However, the data are integrity protected and encrypted from passive eavesdroppers.

Note that due to the vulnerable nature of this method very few public servers support it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

/* A very basic TLS client, with anonymous authentication.

*/

#define MAX_BUF 1024
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);
extern void tcp_close (int sd);

int
main (void)
{
int ret, sd, ii;
gnutls_session_t session;
char buffer [MAX_BUF + 1];
gnutls_anon_client_credentials_t anoncred;
/* Need to enable anonymous KX specifically. x*/

gnutls_global_init ();
gnutls_anon_allocate_client_credentials (&anoncred);
/* Initialize TLS session

x/
gnutls_init (&session, GNUTLS_CLIENT);

Chapter 7: GnuTLS application examples 153

/* Use default priorities */
gnutls_priority_set_direct (session, "PERFORMANCE:+ANON-ECDH:+ANON-DH",
NULL) ;

/* put the anonymous credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);

/* connect to the peer
*/

sd = tcp_connect ();

gnutls_transport_set_int (session, sd);
gnutls_handshake_set_timeout (session, GNUTLS_DEFAULT_HANDSHAKE_TIMEQUT) ;

/* Perform the TLS handshake

*/
do
{
ret = gnutls_handshake (session);
}
while (ret < O &% gnutls_error_is_fatal (ret) == 0);

if (ret < 0)
{
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror (ret);
goto end;

else

{

char*x desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: %s\n", desc);
gnutls_free(desc);

}
gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)
{
printf ("- Peer has closed the TLS connection\n");
goto end;
}

Chapter 7: GnuTLS application examples 154

else if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{

fprintf (stderr, "#** Warning: %s\n", gnutls_strerror (ret));

}
else if (ret < 0)

{
fprintf (stderr, "#*x Error: ¥%s\n", gnutls_strerror (ret));
goto end;
}
if (ret > 0)
{
printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);
}
fputs ("\n", stdout);
}

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:
tcp_close (sd);
gnutls_deinit (session);
gnutls_anon_free_client_credentials (anoncred);
gnutls_global_deinit ();

return O;

7.1.4 Simple datagram TLS client example

This is a client that uses UDP to connect to a server. This is the DTLS equivalent to the
TLS example with X.509 certificates.

/* This example code is placed in the public domain. */
#ifdef HAVE_CONFIG_H

#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>

Chapter 7: GnuTLS application examples 155

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/dtls.h>

/* A very basic Datagram TLS client, over UDP with X.509 authentication.
*/

#tdefine MAX_BUF 1024
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int udp_connect (void);
extern void udp_close (int sd);
extern int verify_certificate_callback (gnutls_session_t session);

int
main (void)
{
int ret, sd, ii;
gnutls_session_t session;
char buffer [MAX_BUF + 1];
const char *err;
gnutls_certificate_credentials_t xcred;

gnutls_global_init (Q);

/* X509 stuff =*/
gnutls_certificate_allocate_credentials (&xcred);

/* sets the trusted cas file */
gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);
gnutls_certificate_set_verify_function (xcred, verify_certificate_callback);

/* Initialize TLS session */
gnutls_init (&session, GNUTLS_CLIENT | GNUTLS_DATAGRAM);

/* Use default priorities */
ret = gnutls_priority_set_direct (session, "NORMAL", &err);
if (ret < 0)
{
if (ret == GNUTLS_E_INVALID_REQUEST)
{

fprintf (stderr, "Syntax error at: ¥%s\n", err);

Chapter 7: GnuTLS application examples 156

}
exit (1);
}

/* put the x509 credentials to the current session */

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

gnutls_server_name_set (session, GNUTLS_NAME_DNS, "my_host_name",
strlen("my_host_name"));

/* connect to the peer */
sd = udp_connect ();

gnutls_transport_set_int (session, sd);

/* set the connection MTU */
gnutls_dtls_set_mtu (session, 1000);
gnutls_handshake_set_timeout (session, GNUTLS_DEFAULT_HANDSHAKE_TIMEQUT) ;

/* Perform the TLS handshake */
do
{
ret = gnutls_handshake (session);
}
while (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN);
/* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET x*/

if (ret < 0)
{
fprintf (stderr, "s** Handshake failed\n");
gnutls_perror (ret);
goto end;

else
{

char* desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: %s\n", desc);
gnutls_free(desc);

}
gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)
{

printf ("- Peer has closed the TLS connection\n");

Chapter 7: GnuTLS application examples 157

goto end;
}
else if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{

fprintf (stderr, "#** Warning: %s\n", gnutls_strerror (ret));
}
else if (ret < 0)
{
fprintf (stderr, "#** Error: ¥%s\n", gnutls_strerror (ret));
goto end;
}

if (ret > 0)
{
printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)

{
fputc (buffer[ii], stdout);
}
fputs ("\n", stdout);

b

/* It is suggested not to use GNUTLS_SHUT_RDWR in DTLS
* connections because the peer’s closure message might
* be lost */

gnutls_bye (session, GNUTLS_SHUT_WR);

end:

udp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return O;

7.1.5 Obtaining session information

Most of the times it is desirable to know the security properties of the current established
session. This includes the underlying ciphers and the protocols involved. That is the
purpose of the following function. Note that this function will print meaningful values only
if called after a successful [gnutls_handshake], page 302.

/* This example code is placed in the public domain. */

Chapter 7: GnuTLS application examples

#ifdef HAVE_CONFIG_H

#include
#endif

#include
#include
#include
#include

#include

<config.h>

<stdio.h>
<stdlib.h>
<gnutls/gnutls.h>
<gnutls/x509.h>

"examples.h"

/* This function will print some details of the
* given session.

*/

int

print_info (gnutls_session_t session)

{

const char *tmp;

gnutls_
gnutls_

credentials_type_t cred;
kx_algorithm_t kx;

int dhe, ecdh;

dhe =

cdh = 0;

/* print the key exchange’s algorithm name

*/

kx = gnutls_kx_get (session);
tmp = gnutls_kx_get_name (kx);

printf

("- Key Exchange: %s\n", tmp);

/* Check the authentication type used and switch
* to the appropriate.

*/

cred =

gnutls_auth_get_type (session);

switch (cred)

{

case

GNUTLS_CRD_IA:

printf ("- TLS/IA session\n");
break;

#ifdef ENABLE_SRP
case GNUTLS_CRD_SRP:
printf ("- SRP session with username %s\n",

gnutls_srp_server_get_username (session));

break;

158

Chapter 7: GnuTLS application examples 159

#endif

case GNUTLS_CRD_PSK:

/* This returns NULL in server side.
*/
if (gnutls_psk_client_get_hint (session) != NULL)
printf ("- PSK authentication. PSK hint ’%s’\n",
gnutls_psk_client_get_hint (session));
/* This returns NULL in client side.
*/
if (gnutls_psk_server_get_username (session) != NULL)
printf ("- PSK authentication. Connected as ’%s’\n",
gnutls_psk_server_get_username (session));

if (kx == GNUTLS_KX_ECDHE_PSK)

ecdh = 1;
else if (kx == GNUTLS_KX_DHE_PSK)
dhe = 1;
break;
case GNUTLS_CRD_ANON: /* anonymous authentication */

printf ("- Anonymous authentication.\n");
if (kx == GNUTLS_KX_ANON_ECDH)

ecdh = 1;
else if (kx == GNUTLS_KX_ANON_DH)
dhe = 1;
break;
case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

}

/* Check if we have been using ephemeral Diffie-Hellman.

*/

if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS)
dhe = 1;

else if (kx == GNUTLS_KX_ECDHE_RSA || kx == GNUTLS_KX_ECDHE_ECDSA)
ecdh = 1;

/* if the certificate list is available, then
* print some information about it.

*/

print_x509_certificate_info (session);

/* switch */

if (ecdh != 0)
printf ("- Ephemeral ECDH using curve %s\n",

Chapter 7: GnuTLS application examples 160

gnutls_ecc_curve_get_name (gnutls_ecc_curve_get (session)));
else if (dhe != 0)
printf ("- Ephemeral DH using prime of %d bits\n",
gnutls_dh_get_prime_bits (session));

/* print the protocol’s name (ie TLS 1.0)

*/
tmp = gnutls_protocol_get_name (gnutls_protocol_get_version (session));
printf ("- Protocol: Y%s\n", tmp);

/* print the certificate type of the peer.
* ie X.509
*/
tmp =
gnutls_certificate_type_get_name (gnutls_certificate_type_get (session));

printf ("- Certificate Type: %s\n", tmp);

/* print the compression algorithm (if any)

*/
tmp = gnutls_compression_get_name (gnutls_compression_get (session));
printf ("- Compression: Y%s\n", tmp);

/* print the name of the cipher used.

* ie 3DES.

*/
tmp = gnutls_cipher_get_name (gnutls_cipher_get (session));
printf ("- Cipher: ¥%s\n", tmp);

/* Print the MAC algorithms name.

* ie SHA1

*/
tmp = gnutls_mac_get_name (gnutls_mac_get (session));
printf ("- MAC: %s\n", tmp);

return O;

7.1.6 Using a callback to select the certificate to use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use
of the certificate selection callback.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>

Chapter 7: GnuTLS application examples

#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <gnutls/abstract.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

/* A TLS client that loads the certificate and key.
*/

#define MAX_BUF 1024
#define MSG "GET / HTTP/1.0\r\n\r\n"

#define CERT_FILE "cert.pem"
#define KEY_FILE "key.pem"
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

extern int tcp_connect (void);
extern void tcp_close (int sd);

static int
cert_callback (gnutls_session_t session,
const gnutls_datum_t * req_ca_rdn, int nregs,
const gnutls_pk_algorithm_ t * sign_algos,
int sign_algos_length, gnutls_pcert_st ** pcert,
unsigned int *pcert_length, gnutls_privkey_t * pkey);

gnutls_pcert_st pcrt;
gnutls_privkey_t key;

/* Load the certificate and the private key.
*/
static void
load_keys (void)
{
int ret;
gnutls_datum_t data;

161

Chapter 7: GnuTLS application examples 162

ret = gnutls_load_file (CERT_FILE, &data);
if (ret < 0)
{
fprintf (stderr, "#** Error loading certificate file.\n");
exit (1);
}

ret = gnutls_pcert_import_x509_raw (&pcrt, &data, GNUTLS_X509_FMT_PEM, 0);
if (ret < 0)
{
fprintf (stderr, "#** Error loading certificate file: Ys\n",
gnutls_strerror (ret));
exit (1);
}

gnutls_free(data.data);

ret = gnutls_load_file (KEY_FILE, &data);
if (ret < 0)
{
fprintf (stderr, "sx* Error loading key file.\n");
exit (1);
X

gnutls_privkey_init (&key);

ret = gnutls_privkey_import_x509_raw (key, &data, GNUTLS_X509_FMT_PEM, NULL, 0);
if (ret < 0)
{
fprintf (stderr, "sx*x Error loading key file: ¥%s\n",
gnutls_strerror (ret));
exit (1);
}

gnutls_free(data.data);
}

int
main (void)
{
int ret, sd, ii;
gnutls_session_t session;
gnutls_priority_t priorities_cache;
char buffer [MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;
/* Allow connections to servers that have OpenPGP keys as well.

*/

Chapter 7: GnuTLS application examples 163

gnutls_global_init ();
load_keys O;

/* X509 stuff */
gnutls_certificate_allocate_credentials (&xcred);

/* priorities */
gnutls_priority_init (&priorities_cache, "NORMAL", NULL);

/* sets the trusted cas file
*/
gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_retrieve_function2 (xcred, cert_callback);

/* Initialize TLS session
x/
gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_priority_set (session, priorities_cache);

/* put the x509 credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/

sd = tcp_connect ();
gnutls_transport_set_int (session, sd);

/* Perform the TLS handshake
x/

ret = gnutls_handshake (session);

if (ret < 0)
{
fprintf (stderr, "***x Handshake failed\n");
gnutls_perror (ret);
goto end;

else

{

Chapter 7: GnuTLS application examples 164

char* desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: %s\n", desc);
gnutls_free(desc);

}
gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)

{
printf ("- Peer has closed the TLS connection\n");
goto end;
}
else if (ret < 0)
{
fprintf (stderr, "#** Error: ¥%s\n", gnutls_strerror (ret));
goto end;
}
printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);
}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);
end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);
gnutls_priority_deinit (priorities_cache);

gnutls_global_deinit ();

return O;

/* This callback should be associated with a session by calling

Chapter 7: GnuTLS application examples 165

* gnutls_certificate_client_set_retrieve_function(session, cert_callback),
* before a handshake.

*/

static int
cert_callback (gnutls_session_t session,
const gnutls_datum_t * req_ca_rdn, int nregs,
const gnutls_pk_algorithm_t * sign_algos,
int sign_algos_length, gnutls_pcert_st ** pcert,
unsigned int *pcert_length, gnutls_privkey_t * pkey)

char issuer_dn[256];

int i, ret;

size_t len;
gnutls_certificate_type_t type;

/* Print the server’s trusted CAs
*/
if (nreqs > 0)
printf ("- Server’s trusted authorities:\n");
else
printf ("- Server did not send us any trusted authorities names.\n");

/* print the names (if any) */
for (i = 0; i < nreqgs; i++)

{

len sizeof (issuer_dn);
ret = gnutls_x509_rdn_get (&req_ca_rdn[i], issuer_dn, &len);
if (ret >= 0)
{
printf (" (%dl: ", i);
printf ("%s\n", issuer_dn);

¥

}

/* Select a certificate and return it.

* The certificate must be of any of the "sign algorithms"
* supported by the server.
*/

type = gnutls_certificate_type_get (session);

if (type == GNUTLS_CRT_X509)

{
*pcert_length = 1;
*pcert = &pcrt;
*pkey = key;

b

else

Chapter 7: GnuTLS application examples 166

{
return -1;

}

return O;

7.1.7 Verifying a certificate

An example is listed below which uses the high level verification functions to verify a given
certificate list.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

#include "examples.h"

/* All the available CRLs
*/

gnutls_x509_crl_t *crl_list;
int crl_list_size;

/* All the available trusted CAs
*/

gnutls_x509_crt_t *ca_list;

int ca_list_size;

static int print_details_func (gnutls_x509_crt_t cert,
gnutls_xb09_crt_t issuer,
gnutls_x509_crl_t crl,
unsigned int verification_output);

/* This function will try to verify the peer’s certificate chain, and
* also check if the hostname matches.
*/
void
verify_certificate_chain (const char *hostname,
const gnutls_datum_t * cert_chain,

Chapter 7: GnuTLS application examples 167

int cert_chain_length)

int 1i;
gnutls_xb09_trust_list_t tlist;
gnutls_x509_crt_t *cert;

unsigned int output;

/* Initialize the trusted certificate list. This should be done
* once on initialization. gnutls_x509_crt_list_import2() and
* gnutls_x509_crl_list_import2() can be used to load them.
x/

gnutls_x509_trust_list_init (&tlist, 0);

gnutls_x509_trust_list_add_cas (tlist, ca_list, ca_list_size, 0);
gnutls_x509_trust_list_add_crls (tlist, crl_list, crl_list_size,
GNUTLS_TL_VERIFY_CRL, 0);

cert = malloc (sizeof (*cert) * cert_chain_length);

/* Import all the certificates in the chain to
* native certificate format.
*/
for (i = 0; i < cert_chain_length; i++)
{
gnutls_x509_crt_init (&cert[il);
gnutls_x509_crt_import (cert[i], &cert_chain[i], GNUTLS_X509_FMT_DER) ;
}

gnutls_x509_trust_list_verify_named_crt (tlist, cert[0], hostname,
strlen (hostname),
GNUTLS_VERIFY_DISABLE_CRL_CHECKS,
&output, print_details_func);

/* if this certificate is not explicitly trusted verify against CAs
*/
if (output != 0)
{
gnutls_x509_trust_list_verify_crt (tlist, cert, cert_chain_length, O,
&output, print_details_func);
+

if (output & GNUTLS_CERT_INVALID)
{
fprintf (stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)

Chapter 7: GnuTLS application examples 168

fprintf (stderr, ": no issuer was found");
if (output & GNUTLS_CERT_SIGNER_NOT_CA)

fprintf (stderr, ": issuer is not a CA");
if (output & GNUTLS_CERT_NOT_ACTIVATED)

fprintf (stderr, ": not yet activated\n");
if (output & GNUTLS_CERT_EXPIRED)

fprintf (stderr, ": expired\n");

fprintf (stderr, "\n");
}
else
fprintf (stderr, "Trusted\n");

/* Check if the name in the first certificate matches our destination!
*/
if (!gnutls_x509_crt_check_hostname (cert[0], hostname))
{
printf ("The certificate’s owner does not match hostname ’%s’\n",
hostname) ;

}
gnutls_x509_trust_list_deinit (tlist, 1);

return;

static int

print_details_func (gnutls_x509_crt_t cert,
gnutls_x509_crt_t issuer, gnutls_x509_crl_t crl,
unsigned int verification_output)

char name[512];

char issuer_name[512];
size_t name_size;

size_t issuer_name_size;

issuer_name_size = sizeof (issuer_name);
gnutls_x509_crt_get_issuer_dn (cert, issuer_name, &issuer_name_size);

name_size = sizeof (name);
gnutls_x509_crt_get_dn (cert, name, &name_size);

fprintf (stdout, "\tSubject: %s\n", name);
fprintf (stdout, "\tIssuer: Y%s\n", issuer_name);

if (issuer != NULL)
{

Chapter 7: GnuTLS application examples 169

issuer_name_size = sizeof (issuer_name);
gnutls_x509_crt_get_dn (issuer, issuer_name, &issuer_name_size);

fprintf (stdout, "\tVerified against: Ys\n", issuer_name);

}

if (crl '= NULL)
{
issuer_name_size = sizeof (issuer_name);
gnutls_x509_crl_get_issuer_dn (crl, issuer_name, &issuer_name_size);

fprintf (stdout, "\tVerified against CRL of: Ys\n", issuer_name);

}
fprintf (stdout, "\tVerification output: %x\n\n", verification_output);

return O;

¥

7.1.8 Using a smart card with TLS

This example will demonstrate how to load keys and certificates from a smart-card or any
other PKCS #11 token, and use it in a TLS connection.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <gnutls/pkcsil.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <getpass.h> /* for getpass() */

/* A TLS client that loads the certificate and key.
*/

Chapter 7: GnuTLS application examples 170

#define MAX_BUF 1024
#define MSG "GET / HTTP/1.0\r\n\r\n"
#define MIN(x,y) (((x)<(y))?7(x):(y))

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

/* The URLs of the objects can be obtained
* using plltool --list-all --login
*/
#define KEY_URL "pkcsll:manufacturer=SomeManufacturer;object=Privatel,20Key" \
";objecttype=private;id=7db’5b%3e%b5%72%33"
#define CERT_URL "pkcsll:manufacturer=SomeManufacturer;object=Certificate;" \
"objecttype=cert;id=db%5b%3e%b5%72%33"

extern int tcp_connect (void);
extern void tcp_close (int sd);

static int

pin_callback (void #*user, int attempt, const char *token_url,
const char *token_label, unsigned int flags, char *pin,
size_t pin_max)

const char *password;
int len;

printf ("PIN required for token ’%s’ with URL ’%s’\n", token_label,
token_url) ;
if (flags & GNUTLS_PIN_FINAL_TRY)
printf ("s** This is the final try before locking'\n");
if (flags & GNUTLS_PIN_COUNT_LOW)
printf ("#*x* Only few tries left before locking!\n");
if (flags & GNUTLS_PIN_WRONG)
printf ("**x* Wrong PIN\n");

password = getpass ("Enter pin: ");
if (password == NULL || password[0] == 0)
{
fprintf (stderr, "No password given\n");
exit (1);
}

len = MIN (pin_max, strlen (password));
memcpy (pin, password, len);
pin[len] = 0;

return O;

Chapter 7: GnuTLS application examples 171

int
main (void)
{
int ret, sd, ii;
gnutls_session_t session;
gnutls_priority_t priorities_cache;
char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;
/* Allow connections to servers that have OpenPGP keys as well.

*/

gnutls_global_init ();

/* PKCS11 private key operations might require PIN.
* Register a callback.
*/

gnutls_pkcsll_set_pin_function (pin_callback, NULL);

/* X509 stuff */
gnutls_certificate_allocate_credentials (&xcred);

/* priorities */
gnutls_priority_init (&priorities_cache, "NORMAL", NULL);

/* sets the trusted cas file
*/
gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file (xcred, CERT_URL, KEY_URL, GNUTLS_X509_FMT_DER);

/* Initialize TLS session
x/
gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_priority_set (session, priorities_cache);

/* put the x509 credentials to the current session
*/
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/

sd = tcp_connect ();

gnutls_transport_set_int (session, sd);

Chapter 7: GnuTLS application examples 172

/* Perform the TLS handshake
x/

ret = gnutls_handshake (session);

if (ret < 0)
{
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror (ret);
goto end;

else

{

charx desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: Y%s\n", desc);
gnutls_free(desc);

}
gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)

{
printf ("- Peer has closed the TLS connection\n");
goto end;
}
else if (ret < 0)
{
fprintf (stderr, "#** Error: ¥%s\n", gnutls_strerror (ret));
goto end;
}
printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)
{
fputc (buffer[ii], stdout);
}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);
end:

tcp_close (sd);

gnutls_deinit (session);

Chapter 7: GnuTLS application examples 173

gnutls_certificate_free_credentials (xcred);
gnutls_priority_deinit (priorities_cache);

gnutls_global_deinit ();

return O;

7.1.9 Client with resume capability example

This is a modification of the simple client example. Here we demonstrate the use of session
resumption. The client tries to connect once using TLS, close the connection and then try
to establish a new connection using the previously negotiated data.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.
*/
extern void check_alert (gnutls_session_t session, int ret);
extern int tcp_connect (void);
extern void tcp_close (int sd);

#define MAX_BUF 1024
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

int
main (void)
{

int ret;

int sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;

/* variables used in session resuming
*/
int t;

Chapter 7: GnuTLS application examples 174

char *session_data = NULL;
size_t session_data_size = 0;

gnutls_global_init Q) ;

/* X509 stuff */
gnutls_certificate_allocate_credentials (&xcred);

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

for (t = 0; t < 2; t++)
{ /* connect 2 times to the server */

sd

tcp_connect ();
gnutls_init (&session, GNUTLS_CLIENT);
gnutls_priority_set_direct (session, "PERFORMANCE:!ARCFOUR-128", NULL);
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);
if (£t > 0)
{
/* if this is not the first time we connect */
gnutls_session_set_data (session, session_data, session_data_size);

free (session_data);

¥

gnutls_transport_set_int (session, sd);
gnutls_handshake_set_timeout (session, GNUTLS_DEFAULT_HANDSHAKE_TIMEQUT) ;

/* Perform the TLS handshake

*/
do
{
ret = gnutls_handshake (session);
}
while (ret < O && gnutls_error_is_fatal (ret) == 0);

if (ret < 0)
{
fprintf (stderr, "#x* Handshake failed\n");
gnutls_perror (ret);
goto end;

else

{

Chapter 7: GnuTLS application examples 175

printf ("- Handshake was completed\n");
}

if (t == 0)
{ /* the first time we connect */
/* get the session data size */
gnutls_session_get_data (session, NULL, &session_data_size);
session_data = malloc (session_data_size);

/* put session data to the session variable */
gnutls_session_get_data (session, session_data, &session_data_size);

{ /* the second time we connect */

/* check if we actually resumed the previous session */
if (gnutls_session_is_resumed (session) != 0)

{

printf ("- Previous session was resumed\n");

else

{

fprintf (stderr, "#** Previous session was NOT resumed\n");

}

/* This function was defined in a previous example
*/

/* print_info(session); */
gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);
if (ret == 0)

{
printf ("- Peer has closed the TLS connection\n");
goto end;
}
else if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{
fprintf (stderr, "#x* Warning: %s\n", gnutls_strerror (ret));
}
else if (ret < 0)
{

fprintf (stderr, "#x*x Error: Ys\n", gnutls_strerror (ret));
goto end;

Chapter 7: GnuTLS application examples

if (ret > 0)
{
printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)

{
fputc (buffer[ii], stdout);
}
fputs ("\n", stdout);

}
gnutls_bye (session, GNUTLS_SHUT_RDWR);
end:
tcp_close (sd);
gnutls_deinit (session);
} /* for() */
gnutls_certificate_free_credentials (xcred);
gnutls_global_deinit ();

return O;

¥

7.1.10 Simple client example with SRP authentication

176

The following client is a very simple SRP TLS client which connects to a server and au-
thenticates using a username and a password. The server may authenticate itself using a

certificate, and in that case it has to be verified.

/* This example code is placed in the public domain.

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.

*/

Chapter 7: GnuTLS application examples 177

extern void check_alert (gnutls_session_t session, int ret);
extern int tcp_connect (void);
extern void tcp_close (int sd);

#define MAX_BUF 1024

#define USERNAME "user"

#define PASSWORD "pass"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

int
main (void)
{

int ret;

int sd, ii;

gnutls_session_t session;

char buffer [MAX_BUF + 1];
gnutls_srp_client_credentials_t srp_cred;
gnutls_certificate_credentials_t cert_cred;

gnutls_global_init ();

gnutls_srp_allocate_client_credentials (&srp_cred);
gnutls_certificate_allocate_credentials (&cert_cred);

gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,
GNUTLS_X509_FMT_PEM) ;
gnutls_srp_set_client_credentials (srp_cred, USERNAME, PASSWORD);

/* connects to server
x/

sd = tcp_connect ();

/* Initialize TLS session
x/
gnutls_init (&session, GNUTLS_CLIENT);

/* Set the priorities.
*/
gnutls_priority_set_direct (session, "NORMAL:+SRP:+SRP-RSA:+SRP-DSS", NULL);

/* put the SRP credentials to the current session

x/
gnutls_credentials_set (session, GNUTLS_CRD_SRP, srp_cred);
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

Chapter 7: GnuTLS application examples 178

gnutls_transport_set_int (session, sd);
gnutls_handshake_set_timeout (session, GNUTLS_DEFAULT_HANDSHAKE_TIMEQUT) ;

/* Perform the TLS handshake

*/
do
{
ret = gnutls_handshake (session);
}
while (ret < 0 && gnutls_error_is_fatal (ret) == 0);

if (ret < 0)
{
fprintf (stderr, "***x Handshake failed\n");
gnutls_perror (ret);
goto end;

else

{

char* desc;
desc = gnutls_session_get_desc(session);
printf ("- Session info: %s\n", desc);
gnutls_free(desc);

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (gnutls_error_is_fatal (ret) != 0 || ret == 0)
{
if (ret == 0)
{
printf ("- Peer has closed the GnuTLS connection\n");
goto end;
}
else
{
fprintf (stderr, "#x*x Error: Ys\n", gnutls_strerror (ret));
goto end;
}
}
else

check_alert (session, ret);

if (ret > 0)
{

Chapter 7: GnuTLS application examples 179

printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++)

{
fputc (buffer[ii], stdout);
}
fputs ("\n", stdout);

}
gnutls_bye (session, GNUTLS_SHUT_RDWR) ;

end:
tcp_close (sd);
gnutls_deinit (session);

gnutls_srp_free_client_credentials (srp_cred);
gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

return O;

7.1.11 Simple client example using the C++ API
The following client is a simple example of a client client utilizing the GnuTLS C++ API.

#include <config.h>

#include <iostream>

#include <stdexcept>

#include <gnutls/gnutls.h>

#include <gnutls/gnutlsxx.h>
#include <cstring> /* for strlen */

/* A very basic TLS client, with anonymous authentication.
* written by Eduardo Villanueva Che.

*/

#define MAX_BUF 1024
#define SA struct sockaddr

#define CAFILE "ca.pem"
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern "C"

{
int tcp_connect(void);
void tcp_close(int sd);

Chapter 7: GnuTLS application examples 180

int main(void)

{
int sd = -1;
gnutls_global_init();

try
{

/* Allow connections to servers that have OpenPGP keys as well.
*/

gnutls::client_session session;

/* X509 stuff */
gnutls::certificate_credentials credentials;

/* sets the trusted cas file

*/

credentials.set_x509_trust_file(CAFILE, GNUTLS_X509_FMT_PEM);
/* put the x509 credentials to the current session

*/

session.set_credentials(credentials);

/* Use default priorities */
session.set_priority ("NORMAL", NULL);

/* connect to the peer

*/

sd = tcp_connect();
session.set_transport_ptr((gnutls_transport_ptr_t) (ptrdiff_t)sd);

/* Perform the TLS handshake
*/

int ret = session.handshake();
if (ret < 0)

{
throw std::runtime_error ("Handshake failed");
b
else
{
std::cout << "- Handshake was completed" << std::endl;
+

session.send (MSG, strlen(MSG));

Chapter 7: GnuTLS application examples 181

char buffer [MAX_BUF + 1];
ret = session.recv(buffer, MAX_BUF);
if (ret == 0)

{
throw std::runtime_error("Peer has closed the TLS connection");
}
else if (ret < 0)
{
throw std::runtime_error(gnutls_strerror(ret));
}
std::cout << "- Received " << ret << " bytes:" << std::endl;

std::cout.write(buffer, ret);
std::cout << std::endl;

session.bye (GNUTLS_SHUT_RDWR) ;

b
catch (std::exception &ex)
{
std::cerr << "Exception caught: " << ex.what() << std::endl;
b
if (sd != -1)

tcp_close(sd);
gnutls_global_deinit();

return O;

7.1.12 Helper functions for TCP connections

Those helper function abstract away TCP connection handling from the other examples. It
is required to build some examples.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>

Chapter 7: GnuTLS application examples 182

#include <unistd.h>

/* tcp.c */
int tcp_connect (void);
void tcp_close (int sd);

/* Connects to the peer and returns a socket
* descriptor.
*/

extern int

tcp_connect (void)

{
const char *xPORT = "5556";
const char *SERVER = "127.0.0.1";
int err, sd;
struct sockaddr_in sa;
/* connects to server
*/

sd = socket (AF_INET, SOCK_STREAM, 0);
memset (&sa, ’\0’, sizeof (sa));
sa.sin_family = AF_INET;
sa.sin_port = htons (atoi (PORT));
inet_pton (AF_INET, SERVER, &sa.sin_addr);
err = connect (sd, (struct sockaddr *) & sa, sizeof (sa));
if (err < 0)

{

fprintf (stderr, "Connect error\n");
exit (1);

}

return sd;
}

/* closes the given socket descriptor.

*/

extern void

tcp_close (int sd)

{
shutdown (sd, SHUT_RDWR); /* no more receptions */
close (sd);

}

Chapter 7: GnuTLS application examples 183

7.1.13 Helper functions for UDP connections

The UDP helper functions abstract away UDP connection handling from the other examples.
It is required to build the examples using UDP.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <unistd.h>

/* udp.c */
int udp_connect (void);
void udp_close (int sd);

/* Connects to the peer and returns a socket
* descriptor.
*/
extern int
udp_connect (void)
{
const char *PORT = "5557";
const char *SERVER = "127.0.0.1";
int err, sd, optval;
struct sockaddr_in sa;

/* connects to server
x/
sd = socket (AF_INET, SOCK_DGRAM, 0);

memset (&sa, ’\0’, sizeof (sa));
sa.sin_family = AF_INET;

sa.sin_port = htons (atoi (PORT));
inet_pton (AF_INET, SERVER, &sa.sin_addr);

#if defined(IP_DONTFRAG)
optval = 1;
setsockopt (sd, IPPROTO_IP, IP_DONTFRAG,
(const void *) &optval, sizeof (optval));

Chapter 7: GnuTLS application examples

#elif de
optval

fined (IP_MTU_DISCOVER)
= IP_PMTUDISC_DO;

setsockopt(sd, IPPROTO_IP, IP_MTU_DISCOVER,

#endif

err =

(const void*) &optval, sizeof (optval));

connect (sd, (struct sockaddr *) & sa, sizeof (sa));

if (err < 0)

{

fprintf (stderr, "Comnect error\n");

ex

}

return

}

/* close
*/

extern v

udp_clos

{

close

¥

it (1);

sd;

s the given socket descriptor.

oid
e (int sd)

(sd);

7.2 Server examples

This section contains examples of TLS and SSL servers, using GnuTLS.

7.2.1 Echo server with X.509 authentication

This example is a very simple echo server which supports X.509 authentication.

/* This

example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include
#endif

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<config.h>

<stdio.h>
<stdlib.h>
<errno.h>
<sys/types.h>
<sys/socket.h>
<arpa/inet.h>
<netinet/in.h>
<string.h>
<unistd.h>
<gnutls/gnutls.h>

184

Chapter 7: GnuTLS application examples 185

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define CRLFILE "crl.pem"

/* This is a sample TLS 1.0 echo server, using X.509 authentication.

*/

#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */

/* These are global */
static gnutls_dh_params_t dh_params;

static int
generate_dh_params (void)
{
unsigned int bits =
gnutls_sec_param_to_pk_bits (GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LEGACY);

/* Generate Diffie-Hellman parameters - for use with DHE
* kx algorithms. When short bit length is used, it might
* be wise to regenerate parameters often.
*/
gnutls_dh_params_init (&dh_params);
gnutls_dh_params_generate2 (dh_params, bits);

return O;

int

main (void)

{
int listen_sd;
int sd, ret;
gnutls_certificate_credentials_t x509_cred;
gnutls_priority_t priority_cache;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
socklen_t client_len;
char topbuf[512];
gnutls_session_t session;
char buffer [MAX_BUF + 1];
int optval = 1;

/* this must be called once in the program

*/

Chapter 7: GnuTLS application examples 186

gnutls_global_init Q);

gnutls_certificate_allocate_credentials (&x509_cred);

/* gnutls_certificate_set_x509_system_trust(xcred); */

gnutls_certificate_set_x509_trust_file (x509_cred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

gnutls_certificate_set_x509_crl_file (x509_cred, CRLFILE,
GNUTLS_X509_FMT_PEM) ;

ret = gnutls_certificate_set_x509_key_file (x509_cred, CERTFILE, KEYFILE,
GNUTLS_X509_FMT_PEM) ;
if (ret < 0)
{

printf ("No certificate or key were found\n");
exit(1);
}

generate_dh_params ();

gnutls_priority_init (&priority_cache, "PERFORMANCE:’SERVER_PRECEDENCE", NULL);

gnutls_certificate_set_dh_params (x509_cred, dh_params);

/* Socket operations
*/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,
sizeof (int));

bind (listen_sd, (struct sockaddr *) & sa_serv, sizeof (sa_serv));
listen (listen_sd, 1024);

printf ("Server ready. Listening to port ’%d’.\n\n", PORT);
client_len = sizeof (sa_cli);

for (5;)

{
gnutls_init (&session, GNUTLS_SERVER);

Chapter 7: GnuTLS application examples 187

gnutls_priority_set (session, priority_cache);
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, x509_cred);
/* We don’t request any certificate from the client.

* If we did we would need to verify it.

*/
gnutls_certificate_server_set_request (session, GNUTLS_CERT_IGNORE) ;

sd = accept (listen_sd, (struct sockaddr *) & sa_cli, &client_len);
printf ("- connection from %s, port %d\n",
inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_int (session, sd);

do
{
ret = gnutls_handshake (session);
}
while (ret < 0 && gnutls_error_is_fatal (ret) == 0);

if (ret < 0)
{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "#*x Handshake has failed (%s)\n\n",
gnutls_strerror (ret));
continue;
}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

for (;;)
{

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)
{
printf ("\n- Peer has closed the GnuTLS connection\n");
break;
}
else if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{
fprintf (stderr, "#x*x Warning: %s\n", gnutls_strerror (ret));

}

Chapter 7: GnuTLS application examples 188

else if (ret < 0)
{
fprintf (stderr, "\n*** Received corrupted "
"data(%d). Closing the connection.\n\n", ret);

break;

}
else if (ret > 0)

{

/* echo data back to the client

x/

gnutls_record_send (session, buffer, ret);

}

b

printf ("\n");

/* do not wait for the peer to close the connection.
*/

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);
gnutls_deinit (session);

}

close (listen_sd);

gnutls_certificate_free_credentials (x509_cred);
gnutls_priority_deinit (priority_cache);

gnutls_global_deinit ();

return O;

7.2.2 Echo server with OpenPGP authentication

The following example is an echo server which supports OpenPGP key authentication. You
can easily combine this functionality —that is have a server that supports both X.509 and
OpenPGP certificates— but we separated them to keep these examples as simple as possible.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

Chapter 7: GnuTLS application examples

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/openpgp.h>

#define KEYFILE "secret.asc"
#define CERTFILE "public.asc"
#define RINGFILE "ring.gpg"

/* This
*/

#define

#define MAX_BUF 1024
#define PORT 5556

/* These are global */
gnutls_dh_params_t dh_params;

static int
generate_dh_params (void)

{
unsigned int bits =
gnutls_sec_param_to_pk_bits (GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LEGACY);
/* Generate Diffie-Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated
* once a day, once a week or once a month.
* security requirements.
*/
gnutls_dh_params_init (&dh_params);
gnutls_dh_params_generate2 (dh_params, bits);
return O;
b
int

main (void)

{

int err, listen_sd;
int sd, ret;
struct sockaddr_in sa_serv;

is a sample TLS 1.0-OpenPGP echo server.

SOCKET_ERR(err,s) if(err==-1) {perror(s);return(l);}

/* listen to 5556 port */

Depending on the

189

Chapter 7: GnuTLS application examples 190

struct sockaddr_in sa_cli;

socklen_t client_len;

char topbuf [612];

gnutls_session_t session;
gnutls_certificate_credentials_t cred;
char buffer [MAX_BUF + 1];

int optval = 1;

char name[256] ;

strcpy (name, "Echo Server");

/* this must be called once in the program
*/
gnutls_global_init (O);

gnutls_certificate_allocate_credentials (&cred);
gnutls_certificate_set_openpgp_keyring_file (cred, RINGFILE,
GNUTLS_OPENPGP_FMT_BASE64) ;

gnutls_certificate_set_openpgp_key_file (cred, CERTFILE, KEYFILE,
GNUTLS_OPENPGP_FMT_BASE64) ;

generate_dh_params ();
gnutls_certificate_set_dh_params (cred, dh_params);

/* Socket operations

*/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);
SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,
sizeof (int));

err = bind (listen_sd, (struct sockaddr *) & sa_serv, sizeof (sa_serv));
SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);

Chapter 7: GnuTLS application examples 191

for

{

G3)

gnutls_init (&session, GNUTLS_SERVER);
gnutls_priority_set_direct (session, "NORMAL:+CTYPE-OPENPGP", NULL);

/* request client certificate if any.
x/
gnutls_certificate_server_set_request (session, GNUTLS_CERT_REQUEST);

sd = accept (listen_sd, (struct sockaddr *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",
inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,
sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_int (session, sd);
ret = gnutls_handshake (session);
if (ret < 0)
{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "#*x Handshake has failed (%s)\n\n",
gnutls_strerror (ret));
continue;
}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

for (;3;)
{

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{
printf ("\n- Peer has closed the GnuTLS connection\n");
break;
}
else if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{
fprintf (stderr, "#** Warning: %s\n", gnutls_strerror (ret));
}
else if (ret < 0)
{

fprintf (stderr, "\n*** Received corrupted "
"data(%d). Closing the connection.\n\n", ret);

Chapter 7: GnuTLS application examples 192

break;

}
else if (ret > 0)

{

/* echo data back to the client

x/

gnutls_record_send (session, buffer, ret);

}

3

printf ("\n");

/* do not wait for the peer to close the connection.
*/

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);
gnutls_deinit (session);

3

close (listen_sd);
gnutls_certificate_free_credentials (cred);
gnutls_global_deinit ();

return O;

7.2.3 Echo server with SRP authentication

This is a server which supports SRP authentication. It is also possible to combine this
functionality with a certificate server. Here it is separate for simplicity.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>

Chapter 7: GnuTLS application examples 193

#include <gnutls/gnutls.h>

#define SRP_PASSWD "tpasswd"
#define SRP_PASSWD_CONF "tpasswd.conf"

#define KEYFILE "key.pem"
#define CERTFILE "cert.pem"
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

/* This is a sample TLS-SRP echo server.

*/

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(l);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */

int
main (void)
{
int err, listen_sd;
int sd, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
socklen_t client_len;
char topbuf [512];
gnutls_session_t session;
gnutls_srp_server_credentials_t srp_cred;
gnutls_certificate_credentials_t cert_cred;
char buffer [MAX_BUF + 1];
int optval = 1;
char name[256] ;

strcpy (name, "Echo Server");
gnutls_global_init (Q);

/* SRP_PASSWD a password file (created with the included srptool utility)
*/
gnutls_srp_allocate_server_credentials (&srp_cred);
gnutls_srp_set_server_credentials_file (srp_cred, SRP_PASSWD,
SRP_PASSWD_CONF) ;

gnutls_certificate_allocate_credentials (&cert_cred);
gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,
GNUTLS_X509_FMT_PEM) ;
gnutls_certificate_set_x509_key_file (cert_cred, CERTFILE, KEYFILE,
GNUTLS_X509_FMT_PEM) ;

Chapter 7: GnuTLS application examples 194

/* TCP socket operations

x/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);
SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,
sizeof (int));

err = bind (listen_sd, (struct sockaddr *) & sa_serv, sizeof (sa_serv));
SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);
for (;;)
{
gnutls_init (&session, GNUTLS_SERVER);
gnutls_priority_set_direct (session,
"NORMAL: -KX-ALL:+SRP:+SRP-DSS:+SRP-RSA", NULL);
gnutls_credentials_set (session, GNUTLS_CRD_SRP, srp_cred);
/* for the certificate authenticated ciphersuites.
*/
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

/* request client certificate if any.
*/
gnutls_certificate_server_set_request (session, GNUTLS_CERT_IGNORE);

sd = accept (listen_sd, (struct sockaddr *) & sa_cli, &client_len);
printf ("- connection from %s, port %d\n",
inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,
sizeof (topbuf)), ntohs (sa_cli.sin_port));
gnutls_transport_set_int (session, sd);
do

{

ret = gnutls_handshake (session);

Chapter 7: GnuTLS application examples 195

}
while (ret < 0 && gnutls_error_is_fatal (ret) == 0);

if (ret < 0)
{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "#x* Handshake has failed (%s)\n\n",
gnutls_strerror (ret));
continue;

}
printf ("- Handshake was completed\n");
printf ("- User %s was connected\n", gnutls_srp_server_get_username(session));

/* print_info(session); */
for (;3)
{

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{
printf ("\n- Peer has closed the GnuTLS connection\n");
break;
}
else if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{
fprintf (stderr, "#** Warning: %s\n", gnutls_strerror (ret));
}
else if (ret < 0)
{

fprintf (stderr, "\n*** Received corrupted "
"data(%d). Closing the connection.\n\n", ret);

break;

}
else if (ret > 0)

{

/* echo data back to the client

x/

gnutls_record_send (session, buffer, ret);

}

3
printf ("\n");
/* do not wait for the peer to close the connection. */
gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

Chapter 7: GnuTLS application examples 196

gnutls_deinit (session);

}

close (listen_sd);

gnutls_srp_free_server_credentials (srp_cred);
gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

return O;

7.2.4 Echo server with anonymous authentication

This example server supports anonymous authentication, and could be used to serve the
example client for anonymous authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

/* This is a sample TLS 1.0 echo server, for anonymous authentication only.

*/

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(l);}
#define MAX_BUF 1024
#define PORT 5556 /* listen to 5556 port */

/* These are global */
static gnutls_dh_params_t dh_params;

static int

Chapter 7: GnuTLS application examples 197

generate_dh_params (void)

{
unsigned int bits =
gnutls_sec_param_to_pk_bits (GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LEGACY);
/* Generate Diffie-Hellman parameters - for use with DHE
* kx algorithms. These should be discarded and regenerated
* once a day, once a week or once a month. Depending on the
* security requirements.
*/
gnutls_dh_params_init (&dh_params);
gnutls_dh_params_generate2 (dh_params, bits);
return O;
3
int
main (void)
{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

socklen_t client_len;

char topbuf[512];

gnutls_session_t session;
gnutls_anon_server_credentials_t anoncred;
char buffer [MAX_BUF + 1];

int optval = 1;

/* this must be called once in the program
*/
gnutls_global_init ();

gnutls_anon_allocate_server_credentials (&anoncred);
generate_dh_params () ;
gnutls_anon_set_server_dh_params (anoncred, dh_params);
/* Socket operations

*/
listen_sd = socket (AF_INET, SOCK_STREAM, 0);
SOCKET_ERR (listen_sd, "socket");
memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;

Chapter 7: GnuTLS application examples 198

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,
sizeof (int));

err = bind (listen_sd, (struct sockaddr *) & sa_serv, sizeof (sa_serv));
SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof (sa_cli);
for (;3;)
{
gnutls_init (&session, GNUTLS_SERVER);
gnutls_priority_set_direct (session, "NORMAL:+ANON-ECDH:+ANON-DH", NULL);
gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);

sd = accept (listen_sd, (struct sockaddr *) & sa_cli, &client_len);
printf ("- connection from %s, port %d\n",
inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_int (session, sd);

do
{
ret = gnutls_handshake (session);
}
while (ret < 0 && gnutls_error_is_fatal (ret) == 0);

if (ret < 0)
{
close (sd);
gnutls_deinit (session);
fprintf (stderr, "#x* Handshake has failed (%s)\n\n",
gnutls_strerror (ret));
continue;
}
printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */
/* print_info(session); */

for (;3;)

Chapter 7: GnuTLS application examples 199

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{
printf ("\n- Peer has closed the GnuTLS connection\n");
break;
}
else if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{
fprintf (stderr, "#x*x Warning: %s\n", gnutls_strerror (ret));
}
else if (ret < 0)
{

fprintf (stderr, "\n*** Received corrupted "
"data(%d). Closing the connection.\n\n", ret);

break;

}
else if (ret > 0)

{

/* echo data back to the client

x/

gnutls_record_send (session, buffer, ret);

}

+
printf ("\n");
/* do not wait for the peer to close the connection.
*/
gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);
gnutls_deinit (session);

}

close (listen_sd);
gnutls_anon_free_server_credentials (anoncred);
gnutls_global_deinit ();

return O;

7.2.5 DTLS echo server with X.509 authentication

This example is a very simple echo server using Datagram TLS and X.509 authentication.

Chapter 7: GnuTLS application examples 200

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/select.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/dtls.h>

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define CRLFILE "crl.pem"

/* This is a sample DTLS echo server, using X.509 authentication.
* Note that error checking is minimal to simplify the example.

*/

#define MAX_BUFFER 1024
#define PORT 5556

typedef struct

{
gnutls_session_t session;
int fd;
struct sockaddr *cli_addr;
socklen_t cli_addr_size;

} priv_data_st;

static int pull_timeout_func (gnutls_transport_ptr_t ptr, unsigned int ms);
static ssize_t push_func (gnutls_transport_ptr_t p, const void *data,
size_t size);
static ssize_t pull_func (gnutls_transport_ptr_t p, void *data, size_t size);
static const char *human_addr (const struct sockaddr *sa, socklen_t salen,
char *buf, size_t buflen);
static int wait_for_connection (int fd);

Chapter 7: GnuTLS application examples 201

static int generate_dh_params (void);

/* Use global credentials and parameters to simplify
* the example. */

static gnutls_certificate_credentials_t x509_cred;
static gnutls_priority_t priority_cache;

static gnutls_dh_params_t dh_params;

int

main (void)

{
int listen_sd;
int sock, ret;
struct sockaddr_in sa_serv;
struct sockaddr_in cli_addr;
socklen_t cli_addr_size;
gnutls_session_t session;
char buffer [MAX_BUFFER];
priv_data_st priv;
gnutls_datum_t cookie_key;
gnutls_dtls_prestate_st prestate;
int mtu = 1400;
unsigned char sequence[8];

/* this must be called once in the program
*/
gnutls_global_init ();

gnutls_certificate_allocate_credentials (&x509_cred);
gnutls_certificate_set_x509_trust_file (x509_cred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

gnutls_certificate_set_x509_crl_file (x509_cred, CRLFILE,
GNUTLS_X509_FMT_PEM) ;

ret = gnutls_certificate_set_x509_key_file (x509_cred, CERTFILE, KEYFILE,
GNUTLS_X509_FMT_PEM) ;
if (ret < 0)
{
printf("No certificate or key were found\n");
exit(1);
}

generate_dh_params ();

gnutls_certificate_set_dh_params (x509_cred, dh_params);

Chapter 7: GnuTLS application examples 202

gnutls_priority_init (&priority_cache,
"PERFORMANCE: -VERS-TLS-ALL:+VERS-DTLS1.0: %SERVER_PRECEDENCE",
NULL) ;

gnutls_key_generate (&cookie_key, GNUTLS_COOKIE_KEY_SIZE);

/* Socket operations
*/
listen_sd = socket (AF_INET, SOCK_DGRAM, 0);

memset (&sa_serv, ’\0’, sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (PORT);

{ /* DTLS requires the IP don’t fragment (DF) bit to be set */
#if defined(IP_DONTFRAG)
int optval = 1;
setsockopt (listen_sd, IPPROTO_IP, IP_DONTFRAG,
(const void *) &optval, sizeof (optval));
#elif defined(IP_MTU_DISCOVER)
int optval = IP_PMTUDISC_DO;
setsockopt(listen_sd, IPPROTO_IP, IP_MTU_DISCOVER,
(const voidx*) &optval, sizeof (optval));
#endif
}

bind (listen_sd, (struct sockaddr *) &sa_serv, sizeof (sa_serv));
printf ("UDP server ready. Listening to port ’%d’.\n\n", PORT);

for (;;)
{
printf ("Waiting for connection...\n");
sock = wait_for_connection (listen_sd);
if (sock < 0)
continue;

cli_addr_size = sizeof (cli_addr);
ret = recvfrom (sock, buffer, sizeof (buffer), MSG_PEEK,
(struct sockaddr *) &cli_addr, &cli_addr_size);
if (ret > 0)
{
memset (&prestate, 0, sizeof (prestate));
ret = gnutls_dtls_cookie_verify (&cookie_key, &cli_addr,
sizeof (cli_addr), buffer, ret,
&prestate) ;

Chapter 7: GnuTLS application examples

}

else

if (ret < 0) /* cookie not valid */

{

}

priv_data_st s;

memset (&s, 0, sizeof (s));

s.fd = sock;

s.cli_addr = (void *) &cli_addr;
s.cli_addr_size = sizeof (cli_addr);

printf ("Sending hello verify request to %s\n",
human_addr ((struct sockaddr *) &cli_addr,
sizeof (cli_addr), buffer,
sizeof (buffer)));

gnutls_dtls_cookie_send (&cookie_key, &cli_addr,
sizeof (cli_addr), &prestate,
(gnutls_transport_ptr_t) & s,
push_func) ;

/* discard peeked data */
recvfrom (sock, buffer, sizeof (buffer), O,

(struct sockaddr *) &cli_addr, &cli_addr_size);

usleep (100);
continue;

printf ("Accepted connection from %s\n",

human_addr ((struct sockaddr *)
&cli_addr, sizeof (cli_addr), buffer,
sizeof (buffer)));

continue;

gnutls_init (&session, GNUTLS_SERVER | GNUTLS_DATAGRAM);
gnutls_priority_set (session, priority_cache);
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, x509_cred);

gnutls_dtls_prestate_set (session, &prestate);
gnutls_dtls_set_mtu (session, mtu);

priv
priv
priv
priv

.session = session;

.fd

= sock;

.cli_addr = (struct sockaddr *) &cli_addr;
.cli_addr_size = sizeof (cli_addr);

gnutls_transport_set_ptr (session, &priv);
gnutls_transport_set_push_function (session, push_func);

203

Chapter 7: GnuTLS application examples 204

gnutls_transport_set_pull_function (session, pull_func);
gnutls_transport_set_pull_timeout_function (session, pull_timeout_func);

do

{

ret = gnutls_handshake (session);

b
while (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN);
/* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET.

* In that case the MTU should be adjusted.

*/

if (ret < 0)
{
fprintf (stderr, "Error in handshake(): Y%s\n",
gnutls_strerror (ret));
gnutls_deinit (session);
continue;

¥

printf ("- Handshake was completed\n");

for (53)
{
do
{
ret = gnutls_record_recv_seq (session, buffer, MAX_BUFFER,
sequence) ;
}
while (ret == GNUTLS_E_AGAIN || ret == GNUTLS_E_INTERRUPTED) ;
if (ret < 0 && gnutls_error_is_fatal (ret) == 0)
{
fprintf (stderr, "#** Warning: %s\n", gnutls_strerror (ret));
continue;
}
else if (ret < 0)
{

fprintf (stderr, "Error in recv(): ¥%s\n",
gnutls_strerror (ret));
break;

3

if (ret == 0)
{
printf ("EOF\n\n");
break;

Chapter 7: GnuTLS application examples 205

}

buffer[ret] = 0;

printf ("receivedl[%.2x%.2x%.2x%.2x%.2x%.2x%.2x%.2x]: Y%s\n",
sequence[0], sequence[1], sequence[2], sequence[3],
sequence[4], sequence[5], sequence[6], sequencel[7], buffer);

/* reply back */
ret = gnutls_record_send (session, buffer, ret);
if (ret < 0)
{
fprintf (stderr, "Error in send(): Ys\n",
gnutls_strerror (ret));
break;

}

gnutls_bye (session, GNUTLS_SHUT_WR);
gnutls_deinit (session);

}

close (listen_sd);

gnutls_certificate_free_credentials (x509_cred);
gnutls_priority_deinit (priority_cache);

gnutls_global_deinit ();

return O;

static int
wait_for_connection (int fd)
{

fd_set rd, wr;

int n;

FD_ZERO (&rd);
FD_ZERO (&wr);

FD_SET (fd, &rd);

/* waiting part */
n = select (fd + 1, &rd, &wr, NULL, NULL);
if (n == -1 && errno == EINTR)

return -1;

Chapter 7: GnuTLS application examples

if (n < 0)
{
perror ("select()");
exit (1);
}

return fd;

¥

/* Wait for data to be received within a timeout period in milliseconds

*/

static int

pull_timeout_func (gnutls_transport_ptr_t ptr, unsigned

{
fd_set rfds;
struct timeval tv;
priv_data_st *priv = ptr;
struct sockaddr_in cli_addr;
socklen_t cli_addr_size;
int ret;
char c;

FD_ZERO (&rfds);
FD_SET (priv->fd, &rfds);

tv.tv_sec = 0;
tv.tv_usec = ms * 1000;

while(tv.tv_usec >= 1000000)
{
tv.tv_usec —-= 1000000;
tv.tv_sec++;

3

ret = select (priv->fd + 1, &rfds, NULL, NULL, &tv);

if (ret <= 0)
return ret;

/* only report ok if the next message is from the peer we expect

* from

x/

cli_addr_size = sizeof (cli_addr);
ret =

recvfrom (priv->fd, &c, 1, MSG_PEEK, (struct sockaddr *) &cli_addr,

&cli_addr_size);
if (ret > 0)

int ms)

206

Chapter 7: GnuTLS application examples 207

¥

{
if (cli_addr_size == priv->cli_addr_size
&& memcmp (&cli_addr, priv->cli_addr, sizeof (cli_addr)) == 0)
return 1;
}
return O;

static ssize_t
push_func (gnutls_transport_ptr_t p, const void *data, size_t size)

{

priv_data_st *priv = p;

return sendto (priv->fd, data, size, 0, priv->cli_addr,
priv->cli_addr_size);

static ssize_t
pull_func (gnutls_transport_ptr_t p, void *data, size_t size)

{

priv_data_st *priv = p;
struct sockaddr_in cli_addr;
socklen_t cli_addr_size;
char buffer[64];

int ret;

cli_addr_size = sizeof (cli_addr);
ret =
recvfrom (priv->fd, data, size, 0, (struct sockaddr *) &cli_addr,
&cli_addr_size);
if (ret == -1)
return ret;

if (cli_addr_size == priv->cli_addr_size
&& memcmp (&cli_addr, priv->cli_addr, sizeof (cli_addr)) == 0)
return ret;

printf ("Denied connection from %s\n",
human_addr ((struct sockaddr *)
&cli_addr, sizeof (cli_addr), buffer, sizeof (buffer)));

gnutls_transport_set_errno (priv->session, EAGAIN);
return -1;

static const char *

Chapter 7: GnuTLS application examples

human_addr (const struct sockaddr *sa,

{

char *buf, size_t buflen)

const char *save_buf = buf;
size_t 1;

if (!buf || !'buflen)
return NULL;

xbuf = ’\0’;

switch (sa->sa_family)

{

#if HAVE_IPV6

case AF_INET6:
snprintf (buf, buflen, "IPv6 ");
break;

#endif

case AF_INET:
snprintf (buf, buflen, "IPv4d ");
break;

3

1 = strlen (buf);
buf += 1;
buflen -= 1;

if (getnameinfo (sa, salen, buf, buflen, NULL, O, NI_NUMERICHOST)

return NULL;

1 = strlen (buf);
buf += 1;
buflen -= 1;

strncat (buf, " port ", buflen);
1 = strlen (buf);

buf += 1;
buflen -= 1;

if (getnameinfo (sa, salen, NULL, O, buf, buflen, NI_NUMERICSERV)

return NULL;

return save_buf;

socklen_t salen,

208

1= 0)

1= 0)

Chapter 7: GnuTLS application examples 209

static int
generate_dh_params (void)

{
int bits =
gnutls_sec_param_to_pk_bits (GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LEGACY);
/* Generate Diffie-Hellman parameters - for use with DHE
* kx algorithms. When short bit length is used, it might
* be wise to regenerate parameters often.
*/
gnutls_dh_params_init (&dh_params);
gnutls_dh_params_generate2 (dh_params, bits);
return O;
}

7.3 OCSP example

Generate OCSP request
A small tool to generate OCSP requests.

/* This example code is placed in the public domain. x*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/crypto.h>
#include <gnutls/ocsp.h>
#ifndef NO_LIBCURL
#include <curl/curl.h>
#endif

#include "read-file.h"

size_t get_data (void *buffer, size_t size, size_t nmemb,
void *userp);
static gnutls_x509_crt_t load_cert (const char *cert_file);
static void _response_info (const gnutls_datum_t * data);
static void
_generate_request (gnutls_datum_t * rdata, gnutls_x509_crt_t cert,
gnutls_x509_crt_t issuer);
static int
_verify_response (gnutls_datum_t * data, gnutls_x509_crt_t cert,

Chapter 7: GnuTLS application examples 210

gnutls_x509_crt_t signer);

/* This program queries an OCSP server.
It expects three files. argv[1l] containing the certificate to
be checked, argv[2] holding the issuer for this certificate,
and argv[3] holding a trusted certificate to verify OCSP’s response.
argv[4] is optional and should hold the server host name.

For simplicity the libcurl library is used.

*/

int
main (int argc, char *argv[])
{
gnutls_datum_t ud, tmp;
int ret;
gnutls_datum_t req;
gnutls_x509_crt_t cert, issuer, signer;
#ifndef NO_LIBCURL
CURL *handle;
struct curl_slist *headers = NULL;
#endif
int v, seq;
const char *cert_file = argv[1l];
const char *issuer_file = argv[2];
const char *signer_file = argv[3];
char *hostname = NULL;

gnutls_global_init (O);

if (argc > 4)
hostname = argv[4];

cert = load_cert (cert_file);
issuer = load_cert (issuer_file);
signer = load_cert (signer_file);

if (hostname == NULL)
{

for (seq = 0;; seq++)
{
ret = gnutls_x509_crt_get_authority_info_access (cert, seq,
GNUTLS_IA_OCSP_URI,
&tmp,
NULL) ;
if (ret == GNUTLS_E_UNKNOWN_ALGORITHM)

Chapter 7: GnuTLS application examples 211

continue;
if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)
{
fprintf (stderr,
"No URI was found in the certificate.\n");
exit (1);
}
if (ret < 0)
{
fprintf (stderr, "error: ¥%s\n",
gnutls_strerror (ret));
exit (1);
}

printf ("CA issuers URI: %.*s\n", tmp.size, tmp.data);

hostname = malloc (tmp.size + 1);
memcpy (hostname, tmp.data, tmp.size);
hostname [tmp.size] = 0;

gnutls_free (tmp.data);
break;

/* Note that the OCSP servers hostname might be available
* using gnutls_x509_crt_get_authority_info_access() in the issuer’s
* certificate */

memset (&ud, 0, sizeof (ud));
fprintf (stderr, "Connecting to %s\n", hostname);

_generate_request (&req, cert, issuer);

#ifndef NO_LIBCURL
curl_global_init (CURL_GLOBAL_ALL) ;

handle = curl_easy_init (;
if (handle == NULL)
exit (1);

headers =
curl_slist_append (headers,

"Content-Type: application/ocsp-request");

curl_easy_setopt (handle, CURLOPT_HTTPHEADER, headers);

Chapter 7: GnuTLS application examples 212

curl_easy_setopt (handle,
curl_easy_setopt (handle,
curl_easy_setopt (handle,
curl_easy_setopt (handle,
curl_easy_setopt (handle,

CURLOPT_POSTFIELDS, (void *) req.data);
CURLOPT_POSTFIELDSIZE, req.size);
CURLOPT_URL, hostname) ;
CURLOPT_WRITEFUNCTION, get_data);
CURLOPT_WRITEDATA, &ud);

ret = curl_easy_perform (handle);

if (ret !'= 0)
{

fprintf (stderr, "curl[%d] error %d\n"

exit (1);

LINE__, ret);

b —_—

curl_easy_cleanup (handle);
#endif

_response_info (&ud);

v = _verify_response (&ud, cert, signer);

gnutls_x509_crt_deinit (cert);
gnutls_x509_crt_deinit (issuer);
gnutls_x509_crt_deinit (signer);

gnutls_global_deinit ();

return v;

static void
_response_info (const gnutls_datum_t * data)

{

gnutls_ocsp_resp_t resp;
int ret;
gnutls_datum buf;

ret = gnutls_ocsp_resp_init (&resp);

if (ret < 0)
exit (1);

ret = gnutls_ocsp_resp_import (resp, data);

if (ret < 0)
exit (1);

ret = gnutls_ocsp_resp_print (resp, GNUTLS_OCSP_PRINT_FULL, &buf);

if (ret !'= 0)
exit (1);

Chapter 7: GnuTLS application examples 213

printf ("%.*s", buf.size, buf.data);
gnutls_free (buf.data);

gnutls_ocsp_resp_deinit (resp);

static gnutls_xb509_crt_t
load_cert (const char *cert_file)
{

gnutls_x509_crt_t crt;

int ret;

gnutls_datum_t data;

size_t size;

ret = gnutls_x509_crt_init (&crt);
if (ret < 0)
exit (1);

data.data = (void *) read_binary_file (cert_file, &size);
data.size = size;

if (!'data.data)
{
fprintf (stderr, "Cannot open file: Y%s\n", cert_file);
exit (1);

ret = gnutls_x509_crt_import (crt, &data, GNUTLS_X509_FMT_PEM);
free (data.data);
if (ret < 0)
{
fprintf (stderr, "Cannot import certificate in %s: %s\n",
cert_file, gnutls_strerror (ret));
exit (1);

return crt;

static void
_generate_request (gnutls_datum_t * rdata, gnutls_x509_crt_t cert,
gnutls_x509_crt_t issuer)
{
gnutls_ocsp_req_t req;
int ret;
unsigned char noncebuf [23];
gnutls_datum_t nonce = { noncebuf, sizeof (noncebuf) };

Chapter 7: GnuTLS application examples 214

ret = gnutls_ocsp_req_init (&req);
if (ret < 0)
exit (1);

ret = gnutls_ocsp_req_add_cert (req, GNUTLS_DIG_SHA1l, issuer, cert);
if (ret < 0)
exit (1);

ret = gnutls_rnd (GNUTLS_RND_RANDOM, nonce.data, nonce.size);
if (ret < 0)
exit (1);

ret = gnutls_ocsp_req_set_nonce (req, 0, &nonce);
if (ret < 0)
exit (1);

ret = gnutls_ocsp_req_export (req, rdata);
if (ret != 0)
exit (1);

gnutls_ocsp_req_deinit (req);

return;

static int
_verify_response (gnutls_datum_t * data, gnutls_x509_crt_t cert,
gnutls_x509_crt_t signer)
{
gnutls_ocsp_resp_t resp;
int ret;
unsigned verify;

ret = gnutls_ocsp_resp_init (&resp);
if (ret < 0)
exit (1);

ret = gnutls_ocsp_resp_import (resp, data);
if (ret < 0)
exit (1);

ret = gnutls_ocsp_resp_check_crt (resp, 0, cert);
if (ret < 0)
exit(1);

Chapter 7: GnuTLS application examples 215

ret = gnutls_ocsp_resp_verify_direct (resp, signer, &verify, 0);
if (ret < 0)
exit (1);

printf ("Verifying OCSP Response: ");
if (verify == 0)

printf ("Verification success!\n");
else

printf ("Verification error!\n");

if (verify & GNUTLS_OCSP_VERIFY_SIGNER_NOT_FOUND)
printf ("Signer cert not found\n");

if (verify & GNUTLS_OCSP_VERIFY_SIGNER_KEYUSAGE_ERROR)
printf ("Signer cert keyusage error\n");

if (verify & GNUTLS_OCSP_VERIFY_UNTRUSTED_SIGNER)
printf ("Signer cert is not trusted\n");

if (verify & GNUTLS_OCSP_VERIFY_INSECURE_ALGORITHM)
printf ("Insecure algorithm\n");

if (verify & GNUTLS_OCSP_VERIFY_SIGNATURE_FAILURE)
printf ("Signature failure\n");

if (verify & GNUTLS_OCSP_VERIFY_CERT_NOT_ACTIVATED)
printf ("Signer cert not yet activated\n");

if (verify & GNUTLS_OCSP_VERIFY_CERT_EXPIRED)
printf ("Signer cert expired\n");

gnutls_ocsp_resp_deinit (resp);

return verify;

size_t
get_data (void *buffer, size_t size, size_t nmemb, void *userp)
{

gnutls_datum_t *ud = userp;
size *= nmemb;

ud->data = realloc (ud->data, size + ud->size);
if (ud->data == NULL)
{

fprintf (stderr, "Not enough memory for the request\n");

Chapter 7: GnuTLS application examples

exit (1);

memcpy (&ud->datalud->size], buffer, size);
ud->size += size;

return size;

7.4 Miscellaneous examples

7.4.1 Checking for an alert
This is a function that checks if an alert has been received in the current session.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>

#include "examples.h"

/* This function will check whether the given return code from
* a gnutls function (recv/send), is an alert, and will print
* that alert.

*/

void

check_alert (gnutls_session_t session, int ret)

{

int last_alert;

if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED
|| ret == GNUTLS_E_FATAL_ALERT_RECEIVED)
{

last_alert = gnutls_alert_get (session);

/* The check for renegotiation is only useful if we are
* a server, and we had requested a rehandshake.
*/
if (last_alert == GNUTLS_A_NO_RENEGOTIATION &&
ret == GNUTLS_E_WARNING_ALERT_RECEIVED)
printf ("x Received NO_RENEGOTIATION alert. "
"Client Does not support renegotiation.\n");

216

Chapter 7: GnuTLS application examples 217

else
printf ("* Received alert ’%d’: ¥%s.\n", last_alert,
gnutls_alert_get_name (last_alert));

7.4.2 X.509 certificate parsing example

To demonstrate the X.509 parsing capabilities an example program is listed below. That
program reads the peer’s certificate, and prints information about it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

#include "examples.h"

static const char *
bin2hex (const void *bin, size_t bin_size)
{

static char printable[110];

const unsigned char *_bin = bin;

char *print;

size_t 1i;

if (bin_size > 50)
bin_size = 50;

print = printable;
for (i = 0; i < bin_size; i++)
{
sprintf (print, "%.2x ", _bin[i]);
print += 2;

b
return printable;
/* This function will print information about this session’s peer

* certificate.

*/

Chapter 7: GnuTLS application examples 218

void
print_x509_certificate_info (gnutls_session_t session)
{
char seriall[40];
char dn[256];
size_t size;
unsigned int algo, bits;
time_t expiration_time, activation_time;
const gnutls_datum_t *cert_list;
unsigned int cert_list_size = O;
gnutls_x509_crt_t cert;
gnutls_datum_t cinfo;

/* This function only works for X.509 certificates.

*/

if (gnutls_certificate_type_get (session) != GNUTLS_CRT_X509)
return;

cert_list = gnutls_certificate_get_peers (session, &cert_list_size);
printf ("Peer provided %d certificates.\n", cert_list_size);

if (cert_list_size > 0)
{

int ret;

/* we only print information about the first certificate.
*/
gnutls_x509_crt_init (&cert);

gnutls_x509_crt_import (cert, &cert_list[0], GNUTLS_X509_FMT_DER) ;
printf ("Certificate info:\n");

/* This is the preferred way of printing short information about
a certificate. */

ret = gnutls_x509_crt_print (cert, GNUTLS_CRT_PRINT_ONELINE, &cinfo);
if (ret == 0)
{
printf ("\t%s\n", cinfo.data);
gnutls_free (cinfo.data);

¥

/* If you want to extract fields manually for some other reason,
below are popular example calls. */

Chapter 7: GnuTLS application examples 219

expiration_time = gnutls_x509_crt_get_expiration_time (cert);
activation_time = gnutls_x509_crt_get_activation_time (cert);

printf ("\tCertificate is valid since: %s", ctime (&activation_time));
printf ("\tCertificate expires: ¥s", ctime (&expiration_time));

/* Print the serial number of the certificate.

*/

size = sizeof (serial);
gnutls_x509_crt_get_serial (cert, serial, &size);

printf ("\tCertificate serial number: %s\n", bin2hex (serial, size));

/* Extract some of the public key algorithm’s parameters
*/
algo = gnutls_x509_crt_get_pk_algorithm (cert, &bits);

printf ("Certificate public key: ¥%s",
gnutls_pk_algorithm_get_name (algo));

/* Print the version of the X.509
* certificate.
*/
printf ("\tCertificate version: #%d\n",
gnutls_x509_crt_get_version (cert));

size = sizeof (dn);
gnutls_x509_crt_get_dn (cert, dn, &size);
printf ("\tDN: %s\n", dn);

size = sizeof (dn);
gnutls_x509_crt_get_issuer_dn (cert, dn, &size);
printf ("\tIssuer’s DN: %s\n", dn);

gnutls_x509_crt_deinit (cert);

7.4.3 Listing the ciphersuites in a priority string

This is a small program to list the enabled ciphersuites by a priority string.
/* This example code is placed in the public domain. */
#include <config.h>

#include <stdio.h>
#include <stdlib.h>

Chapter 7: GnuTLS application examples 220

#include <string.h>
#include <gnutls/gnutls.h>

static void
print_cipher_suite_list (const char* priorities)

{
size_t 1i;
int ret;
unsigned int idx;
const char *name;
const char *err;
unsigned char id[2];
gnutls_protocol_t version;
gnutls_priority_t pcache;
if (priorities != NULL)
{
printf ("Cipher suites for %s\n", priorities);
ret = gnutls_priority_init(&pcache, priorities, &err);
if (ret < 0)
{
fprintf (stderr, "Syntax error at: %s\n", err);
exit (1) ;
}
for (i=0;;i++)
{
ret = gnutls_priority_get_cipher_suite_index(pcache, i, &idx);
if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE) break;
if (ret == GNUTLS_E_UNKNOWN_CIPHER_SUITE) continue;
name = gnutls_cipher_suite_info(idx, id, NULL, NULL, NULL, &version);
if (name != NULL)
printf ("%-50s\t0x%02x, 0x%02x\t%s\n",
name, (unsigned char) id[0], (unsigned char) id[1],
gnutls_protocol_get_name (version));
}
return;
}
}

int main(int argc, char** argv)

{
if (argec > 1)

Chapter 7: GnuTLS application examples 221

print_cipher_suite_list (argv[1]);

7.4.4 PKCS #12 structure generation example

This small program demonstrates the usage of the PKCS #12 API, by generating such a
structure.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gnutls/gnutls.h>
#include <gnutls/pkcs12.h>

#include "examples.h"
#define OUTFILE "out.p1l2"

/* This function will write a pkcsl2 structure into a file.

* cert: 1is a DER encoded certificate

*x pkcs8_key: is a PKCS #8 encrypted key (note that this must be
* encrypted using a PKCS #12 cipher, or some browsers will crash)
password: 1is the password used to encrypt the PKCS #12 packet.

*

*/
int
write_pkcs12 (const gnutls_datum_t * cert,
const gnutls_datum_t * pkcs8_key, const char *password)
{
gnutls_pkcsl2_t pkcsl2;
int ret, bag_index;
gnutls_pkcsl2_bag_t bag, key_bag;
char pkcs12_struct[10 * 1024];
size_t pkcsl2_struct_size;
FILE *fd;

/* A good idea might be to use gnutls_x509_privkey_get_key_id()
* to obtain a unique ID.
*/
gnutls_datum_t key_id = { (void *) "\x00\x00\x07", 3 };
gnutls_global_init ();

/* Firstly we create two helper bags, which hold the certificate,

Chapter 7: GnuTLS application examples 222

* and the (encrypted) key.
*/

gnutls_pkcs12_bag_init (&bag);
gnutls_pkcsl12_bag_init (&key_bag);

ret = gnutls_pkcsl2_bag_set_data (bag, GNUTLS_BAG_CERTIFICATE, cert);
if (ret < 0)
{
fprintf (stderr, "ret: Ys\n", gnutls_strerror (ret));
return 1;

}

/* ret now holds the bag’s index.
*/

bag_index = ret;

/* Associate a friendly name with the given certificate. Used
* by browsers.
*/

gnutls_pkcsl2_bag_set_friendly_name (bag, bag_index, "My name");

/* Associate the certificate with the key using a unique key
* ID.
*/

gnutls_pkcsl2_bag_set_key_id (bag, bag_index, &key_id);

/* use weak encryption for the certificate.
*/
gnutls_pkcs12_bag_encrypt (bag, password, GNUTLS_PKCS_USE_PKCS12_RC2_40);

/* Now the key.
*/

ret = gnutls_pkcsl2_bag_set_data (key_bag,
GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,

pkcs8_key) ;
if (ret < 0)
{
fprintf (stderr, "ret: Ys\n", gnutls_strerror (ret));
return 1;
}

/* Note that since the PKCS #8 key is already encrypted we don’t
* bother encrypting that bag.
*/

bag_index = ret;

Chapter 7: GnuTLS application examples 223

gnutls_pkcsl2_bag_set_friendly_name (key_bag, bag_index, "My name");

gnutls_pkcs12_bag_set_key_id (key_bag, bag_index, &key_id);

/* The bags were filled. Now create the PKCS #12 structure.
*/
gnutls_pkcs12_init (&pkcsl2);

/* Insert the two bags in the PKCS #12 structure.
*/

gnutls_pkcsl2_set_bag (pkcsl2, bag);
gnutls_pkcsl12_set_bag (pkcsl2, key_bag);

/* Generate a message authentication code for the PKCS #12
* structure.
*/

gnutls_pkcsl2_generate_mac (pkcsl2, password);

pkcs12_struct_size = sizeof (pkcsl2_struct);
ret =
gnutls_pkcs12_export (pkcsl2, GNUTLS_X509_FMT_DER, pkcsl2_struct,
&pkcsl12_struct_size);
if (ret < 0)
{
fprintf (stderr, "ret: Ys\n", gnutls_strerror (ret));
return 1;

}

fd = fopen (OUTFILE, "w");
if (fd == NULL)
{
fprintf (stderr, "cannot open file\n");
return 1;
}
furite (pkcsl12_struct, 1, pkcsl2_struct_size, fd);
fclose (fd);

gnutls_pkcsl12_bag_deinit (bag);
gnutls_pkcs12_bag_deinit (key_bag);
gnutls_pkcsl12_deinit (pkcsi2);

return O;

Chapter 7: GnuTLS application examples 224

7.5 XSSL examples

XSSL is an experimental API available in the gnutls-xssl library and in gnutls/xssl.h
header. It is intended to be a very simple to use API avoid the GnuTLS API. The API
however has the following limitations

e It is applicable to blocking sockets only.

e The server verification is based on its DNS name.

7.5.1 Example client with X.509 certificate authentication

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/xssl.h>
#include "examples.h"

/* A simple TLS client, with X.509 authentication. Certificate verification
* is explicit.

*/

extern int tcp_connect (void);
extern void tcp_close (int sd);

int main (void)

{
int ret;
char *line = NULL;
size_t line_len;
xssl_cred_t cred;
xssl_t sb;
unsigned int status;
int fd;

gnutls_global_init ();
fd = tcp_connect (O ;
ret = xssl_cred_init(&cred, GNUTLS_VMETHOD_SYSTEM_CAS, NULL, 0);

if (ret < 0)
exit(1);

Chapter 7: GnuTLS application examples 225

/* Initialize TLS session
x/
ret = xssl_client_init(&sb, "www.example.com", NULL,
(gnutls_transport_ptr_t)fd,
NULL, cred, &status, 0);
if (ret < 0)

{
if (ret == GNUTLS_E_AUTH_ERROR)
{
gnutls_datum_t txt;
gnutls_certificate_verification_status_print(status, GNUTLS_CRT_X509,
&txt, 0);
fprintf (stderr, "Verification error (%x): ¥%s\n", status, txt.data);
gnutls_free(txt.data);
}
exit(1);
}

#define REQ "GET / HTTP/1.0\r\n"
ret = xssl_write(sb, REQ, sizeof (REQ)-1);
if (ret < 0)
exit(1);

do
{

ret = xssl_getline(sb, &line, &line_len);
if (ret < 0)
exit(1);
fprintf (stderr, "received: Y%s\n", line);
}
while (ret >= 0);
gnutls_free(line);
xssl_deinit(sb);
tcp_close (fd);

xssl_cred_deinit (cred);

gnutls_global_deinit ();

Chapter 7: GnuTLS application examples

226

7.5.2 Example client with X.509 certificate authentication and
TOFU

/* This example code is placed in the public domain.

#ifdef HAVE_CONFIG_H

#include
#endif

#include
#include
#include
#include
#include
#include

/* A simple TLS client, with X.509 authentication.

<config.h>

<stdio.h>
<stdlib.h>
<string.h>
<gnutls/gnutls.h>
<gnutls/xssl.h>
"examples.h"

* with a fixed CA, and trust on first use.

*/

extern int tcp_connect (void);
extern void tcp_close (int sd);

int main (void)

{

int ret;
char *xline = NULL;

size_t

line_len;

xssl_cred_t cred;

xssl_t

gnutls_

sb;
cinput_st aux[2];

unsigned aux_size = 0;
unsigned int status;

int fd;

gnutls_

fd =

aux [aux_size] .type =

global_init ();

tcp_connect ();

GNUTLS_CINPUT_TYPE_FILE;

aux [aux_size] .contents = GNUTLS_CINPUT_CAS;

aux[aux_size] .fmt =
aux[aux_size] .il.file =

GNUTLS_X509_FMT_PEM;
"/path/to/ca/file";

aux_size++;

*/

Certificate verification

/* This may be skipped to use the default DB file */

aux [aux_size] .type =
aux[aux_size] .contents =

GNUTLS_CINPUT_TYPE_FILE;
GNUTLS_CINPUT_TOFU_DB;

Chapter 7: GnuTLS application examples 227

aux [aux_size] .il.file = "/path/to/trust/db/file";
aux_size++;

ret = xssl_cred_init(&cred, GNUTLS_VMETHOD_GIVEN_CAS|GNUTLS_VMETHOD_TOFU,
aux, aux_size);
if (ret < 0)
exit(1);

/* Initialize TLS session
x/
ret = xssl_client_init(&sb, "www.example.com", NULL,
(gnutls_transport_ptr_t)fd,
NULL, cred, &status, 0);
if (ret < 0)

{
if (ret == GNUTLS_E_AUTH_ERROR)
{
gnutls_datum_t txt;
gnutls_certificate_verification_status_print(status, GNUTLS_CRT_X509,
&txt, 0);
fprintf (stderr, "Verification error (%x): %s\n", status, txt.data);
gnutls_free(txt.data);
}
exit(1);
}

#define REQ "GET / HTTP/1.0\r\n"
ret = xssl_write(sb, REQR, sizeof (REQ)-1);
if (ret < 0)
exit(1);

do
{

ret = xssl_getline(sb, &line, &line_len);
if (ret < 0)
exit(1);

fprintf(stderr, "received: Ys\n", line);
}
while (ret >= 0);

gnutls_free(line);

xssl_deinit(sb);

Chapter 7: GnuTLS application examples 228

tcp_close (fd);
xssl_cred_deinit (cred);

gnutls_global_deinit ();
}

Chapter 8: Using GnuTLS as a cryptographic library 229

8 Using GnuTLS as a cryptographic library

GnuTLS is not a low-level cryptographic library, i.e., it does not provide access to basic
cryptographic primitives. However it abstracts the internal cryptographic back-end (see
Section 10.5 [Cryptographic Backend], page 251), providing symmetric crypto, hash and
HMAC algorithms, as well access to the random number generation.

8.1 Symmetric algorithms

The available functions to access symmetric crypto algorithms operations are shown below.
The supported algorithms are the algorithms required by the TLS protocol. They are listed
in Table 3.1.

int [gnutls_cipher_init], page 511 (gnutls_cipher_hd_t * handle,
gnutls_cipher_algorithm_t cipher, const gnutls_datum_t * key, const
gnutls_datum_t * iv)

int [gnutls_cipher_encrypt2], page 511 (gnutls_cipher_hd_t handle, const void
* text, size_t textlen, void * ciphertext, size_t ciphertextlen)

int [gnutls_cipher_decrypt2], page 510 (gnutls_cipher_hd_t handle, const void
* ciphertext, size_t ciphertextlen, void * text, size_t textlen)

void [gnutls_cipher_set_iv], page 511 (gnutls_cipher_hd_t handle, void * iv,
size_t ivlen)

void [gnutls_cipher_deinit], page 510 (gnutls_cipher_hd_t handle)

In order to support authenticated encryption with associated data (AEAD) algorithms the
following functions are provided to set the associated data and retrieve the authentication
tag.

int [gnutls_cipher_add_auth], page 509 (gnutls_cipher_hd_t handle, const void
* text, size_t text_size)

int [gnutls_cipher_tag]l, page 512 (gnutls_cipher_hd_t handle, void * tag,
size_t tag_size)

8.2 Public key algorithms

Public key cryptography algorithms such as RSA, DSA and ECDSA, can be accessed using
the abstract key API in Section 5.1 [Abstract key types|, page 79. This is a high level API
with the advantage of transparently handling keys in memory and keys present in smart
cards.

8.3 Hash and HMAC functions

The available operations to access hash functions and hash-MAC (HMAC) algorithms are
shown below. HMAC algorithms provided keyed hash functionality. They supported HMAC
algorithms are listed in Table 3.2.

Chapter 8: Using GnuTLS as a cryptographic library 230

int [gnutls_hmac_init], page 514 (gnutls_hmac_hd_t * dig,
gnutls_mac_algorithm_t algorithm, const void * key, size_t keylen)

int [gnutls_hmac], page 513 (gnutls_hmac_hd_t handle, const void * text,
size_t textlen)

void [gnutls_hmac_output], page 514 (gnutls_hmac_hd_t handle, void * digest)
void [gnutls_hmac_deinit], page 513 (gnutls_hmac_hd_t handle, void * digest)
int [gnutls_hmac_get_len], page 514 (gnutls_mac_algorithm_t algorithm)

int [gnutls_hmac_fast], page 514 (gnutls_mac_algorithm_t algorithm, const
void * key, size_t keylen, const void * text, size_t textlen, void * digest)
The available functions to access hash functions are shown below. The supported hash
functions are the same as the HMAC algorithms.

int [gnutls_hash_init], page 513 (gnutls_hash_hd_t * dig,
gnutls_digest_algorithm_t algorithm)

int [gnutls_hash], page 512 (gnutls_hash_hd_t handle, const void * text,
size_t textlen)

void [gnutls_hash_output], page 513 (gnutls_hash_hd_t handle, void * digest)
void [gnutls_hash_deinit], page 512 (gnutls_hash_hd_t handle, void * digest)
int [gnutls_hash_get_len], page 513 (gnutls_digest_algorithm_t algorithm)
int [gnutls_hash_fast], page 512 (gnutls_digest_algorithm_t algorithm, const
void * text, size_t textlen, void * digest)

int [gnutls_fingerprint], page 299 (gnutls_digest_algorithm_t algo, const
gnutls_datum_t * data, void * result, size_t * result_size)

8.4 Random number generation

Access to the random number generator is provided using the [gnutls_rnd], page 515 func-
tion. It allows obtaining random data of various levels.

GNUTLS_RND_NONCE
Non-predictable random number. Fatal in parts of session if broken, i.e., vul-
nerable to statistical analysis.

GNUTLS_RND_RANDOM
Pseudo-random cryptographic random number. Fatal in session if broken.

GNUTLS_RND_KEY
Fatal in many sessions if broken.

Figure 8.1: The random number levels.

int gnutls_rnd (gnutls_-rnd_level_t level, void * data, size_t len) [Function]
level: a security level

data: place to store random bytes

len: The requested size

This function will generate random data and store it to output buffer.
Returns: Zero or a negative error code on error.

Since: 2.12.0

Chapter 9: Other included programs 231

9 Other included programs

Included with GnuTLS are also a few command line tools that let you use the library
for common tasks without writing an application. The applications are discussed in this
chapter.

9.1 Invoking gnutls-cli

Simple client program to set up a TLS connection to some other computer. It sets up a
TLS connection and forwards data from the standard input to the secured socket and vice
versa.

This section was generated by AutoGen, using the agtexi-cmd template and the option

descriptions for the gnutls-cli program. This software is released under the GNU General
Public License, version 3 or later.

gnutls-cli help/usage (--help)

This is the automatically generated usage text for gnutls-cli.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

gnutls-cli - GnuTlLS client - Ver. QVERSIONG@

USAGE: 1t-gnutls-cli [-<flag> [<val>] | --<name>[{=| }<val>]]... [hostname]
-d, -—-debug=num Enable debugging.
- It must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
--tofu Enable trust on first use authentication
- disabled as —--no-tofu
-—-dane Enable DANE certificate verification (DNSSEC)
- disabled as —--no-dane
--local-dns Use the local DNS server for DNSSEC resolving.
- disabled as --no-local-dns
--ca-verification Disable CA certificate verification

- disabled as -—no-ca-verification
- enabled by default

--ocsp Enable OCSP certificate verification
- disabled as --no-ocsp
-r, ——resume Establish a session and resume
-b, —--heartbeat Activate heartbeat support
-e, —-rehandshake Establish a session and rehandshake
--noticket Don’t accept session tickets

-s, —--starttls Connect, establish a plain session and start TLS.

Chapter 9: Other included programs 232

-u, —--udp
——mtu=num

--srtp-profiles=str
--crlf
--x509fmtder

-f, --fingerprint
--disable-extensions
—--print-cert
--recordsize=num

—--dh-bits=num
--priority=str
--x509cafile=str
--x509crlfile=file

--pgpkeyfile=file
-—-pgpkeyring=file
--pgpcertfile=file

--x509keyfile=str
--x509certfile=str
--pgpsubkey=str
--srpusername=str
--srppasswd=str
--pskusername=str
—--pskkey=str

-p, —-port=str
--insecure
--ranges
—--benchmark-ciphers

Use DTLS (datagram TLS) over UDP
Set MTU for datagram TLS

- It must be in the range:

0 to 17000

Offer SRTP profiles
Send CR LF instead of LF
Use DER format for certificates to read from
Send the openpgp fingerprint, instead of the key
Disable all the TLS extensions
Print peer’s certificate in PEM format
The maximum record size to advertize

- It must be in the range:

0 to 4096

The minimum number of bits allowed for DH
Priorities string
Certificate file or PKCS #11 URL to use
CRL file to use

- file must pre-exist
PGP Key file to use

- file must pre-exist
PGP Key ring file to use

- file must pre-exist
PGP Public Key (certificate) file to use

- file must pre-exist
X.509 key file or PKCS #11 URL to use
X.509 Certificate file or PKCS #11 URL to use
PGP subkey to use (hex or auto)
SRP username to use
SRP password to use
PSK username to use
PSK key (in hex) to use
The port or service to connect to
Don’t abort program if server certificate can’t be validated
Use length-hiding padding to prevent traffic analysis
Benchmark individual ciphers

--benchmark-soft-ciphers Benchmark individual software ciphers (no hw acceleration)

—--benchmark-tls-kx

—--benchmark-tls-ciphers

-1, --list

--disable-sni
-v, —-version[=arg]
-h, --help

-!, --more-help

Benchmark TLS key exchange methods

Benchmark TLS ciphers
Print a list of the supported algorithms and modes
Do not send a Server Name Indication (SNI)
Output version information and exit
Display extended usage information and exit
Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single

hyphen and the flag character.

Operands and options may be intermixed. They will be reordered.

Chapter 9: Other included programs 233

Simple client program to set up a TLS connection to some other computer. It
sets up a TLS connection and forwards data from the standard input to the
secured socket and vice versa.

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

tofu option

This is the “enable trust on first use authentication” option. This option will, in addition
to certificate authentication, perform authentication based on previously seen public keys,
a model similar to SSH authentication.

dane option

This is the “enable dane certificate verification (dnssec)” option. This option will, in addi-
tion to certificate authentication using the trusted CAs, verify the server certificates using
on the DANE information available via DNSSEC.

local-dns option

This is the “use the local dns server for dnssec resolving.” option. This option will use the
local DNS server for DNSSEC. This is disabled by default due to many servers not allowing
DNSSEC.

ca-verification option
This is the “disable ca certificate verification” option.
This option has some usage constraints. It:

e is enabled by default.

This option will disable CA certificate verification. It is to be used with the —dane or —tofu
options.

ocsp option

This is the “enable ocsp certificate verification” option. This option will enable verification
of the peer’s certificate using ocsp

resume option (-r)

This is the “establish a session and resume” option. Connect, establish a session, reconnect
and resume.

Chapter 9: Other included programs 234

rehandshake option (-e)

This is the “establish a session and rehandshake” option. Connect, establish a session and
rehandshake immediately.

starttls option (-s)

This is the “connect, establish a plain session and start tls.” option. The TLS session will
be initiated when EOF or a SIGALRM is received.

disable-extensions option

This is the “disable all the tls extensions” option. This option disables all TLS extensions.
Deprecated option. Use the priority string.

dh-bits option

This is the “the minimum number of bits allowed for dh” option. This option takes an
argument number. This option sets the minimum number of bits allowed for a Diffie-
Hellman key exchange. You may want to lower the default value if the peer sends a weak
prime and you get an connection error with unacceptable prime.

priority option

This is the “priorities string” option. This option takes an argument string. TLS al-
gorithms and protocols to enable. You can use predefined sets of ciphersuites such as
PERFORMANCE, NORMAL, SECURE128, SECURE256.

Check the GnuTLS manual on section “Priority strings” for more information on allowed
keywords

ranges option

This is the “use length-hiding padding to prevent traffic analysis” option. When possible
(e.g., when %NEW_PADDING is specified), use length-hiding padding to prevent traffic
analysis.

list option (-1)

This is the “print a list of the supported algorithms and modes” option. Print a list of
the supported algorithms and modes. If a priority string is given then only the enabled
ciphersuites are shown.

gnutls-cli exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

Chapter 9: Other included programs 235

gnutls-cli See Also
gnutls-cli-debug(1), gnutls-serv(1)

gnutls-cli Examples

Connecting using PSK authentication

To connect to a server using PSK authentication, you need to enable the choice of PSK by
using a cipher priority parameter such as in the example below.

$./gnutls-cli -p 5556 localhost --pskusername psk_identity \
—--pskkey 88£3824b3e5659f52d00e959bacab954b6540344 \
—-priority NORMAL:-KX-ALL:+ECDHE-PSK:+DHE-PSK:+PSK

Resolving ’localhost’...

Connecting to ’127.0.0.1:55567...

- PSK authentication.

- Version: TLS1.1

- Key Exchange: PSK

- Cipher: AES-128-CBC

- MAC: SHA1

- Compression: NULL

- Handshake was completed

- Simple Client Mode:

By keeping the —pskusername parameter and removing the —pskkey parameter, it will query
only for the password during the handshake.

Listing ciphersuites in a priority string
To list the ciphersuites in a priority string:

$./gnutls-cli --priority SECURE192 -1
Cipher suites for SECURE192

TLS_ECDHE_ECDSA_AES_256_CBC_SHA384 OxcO, 0x24 TLS1.2
TLS_ECDHE_ECDSA_AES_256_GCM_SHA384 0xcO, Ox2e TLS1.2
TLS_ECDHE_RSA_AES_256_GCM_SHA384 OxcO, 0x30 TLS1.2
TLS_DHE_RSA_AES_256_CBC_SHA256 0x00, Ox6b TLS1.2
TLS_DHE_DSS_AES_256_CBC_SHA256 0x00, Ox6a TLS1.2
TLS_RSA_AES_256_CBC_SHA256 0x00, 0x3d TLS1.2

Certificate types: CTYPE-X.509

Protocols: VERS-TLS1.2, VERS-TLS1.1, VERS-TLS1.0, VERS-SSL3.0, VERS-DTLS1.0
Compression: COMP-NULL

Elliptic curves: CURVE-SECP384R1, CURVE-SECP521R1

PK-signatures: SIGN-RSA-SHA384, SIGN-ECDSA-SHA384, SIGN-RSA-SHA512, SIGN-ECDSA-SHAb!

9.2 Invoking gnutls-serv

Server program that listens to incoming TLS connections.

Chapter 9: Other included programs 236

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-serv program. This software is released under the GNU General
Public License, version 3 or later.

gnutls-serv help/usage (--help)
This is the automatically generated usage text for gnutls-serv.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

gnutls-serv - GnuTlLS server - Ver. QVERSION®

USAGE: 1t-gnutls-serv [-<flag> [<val>] | --<name>[{=]| }<val>]]...
-d, --debug=num Enable debugging.
- It must be in the range:
0 to 9999
--noticket Don’t accept session tickets
-g, ——generate Generate Diffie-Hellman and RSA-export parameters
-q, ——quiet Suppress some messages
—--nodb Do not use a resumption database
--http Act as an HTTP server
--echo Act as an Echo server
-u, --udp Use DTLS (datagram TLS) over UDP
--mtu=num Set MTU for datagram TLS
- It must be in the range:
0 to 17000
—--srtp-profiles=str Offer SRTP profiles
-a, ——disable-client-cert Do not request a client certificate
-r, ——require-client-cert Require a client certificate
-b, —--heartbeat Activate heartbeat support
--x509fmtder Use DER format for certificates to read from
--priority=str Priorities string
—-—-dhparams=file DH params file to use
- file must pre-exist
--xb509cafile=str Certificate file or PKCS #11 URL to use
--x509crlfile=file CRL file to use
- file must pre-exist
-—pgpkeyfile=file PGP Key file to use
- file must pre-exist
--pgpkeyring=file PGP Key ring file to use
- file must pre-exist
--pgpcertfile=file PGP Public Key (certificate) file to use
- file must pre-exist
--x509keyfile=str X.509 key file or PKCS #11 URL to use

—--x509certfile=str X.509 Certificate file or PKCS #11 URL to use

Chapter 9: Other included programs 237

--x509dsakeyfile=str Alternative X.509 key file or PKCS #11 URL to use
--xb09dsacertfile=str Alternative X.509 Certificate file or PKCS #11 URL to use
--xb09ecckeyfile=str Alternative X.509 key file or PKCS #11 URL to use
--xb09ecccertfile=str Alternative X.509 Certificate file or PKCS #11 URL to use
--pgpsubkey=str PGP subkey to use (hex or auto)
--srppasswd=file SRP password file to use

- file must pre-exist
--srppasswdconf=file SRP password configuration file to use

- file must pre-exist

--pskpasswd=file PSK password file to use
- file must pre-exist
--pskhint=str PSK identity hint to use

--ocsp-response=file The OCSP response to send to client
- file must pre-exist

-p, ——port=num The port to connect to

-1, --list Print a list of the supported algorithms and modes
-v, —--version[=arg] OQutput version information and exit

-h, --help Display extended usage information and exit

-1, —--more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Server program that listens to incoming TLS connections.

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

heartbeat option (-b)

This is the “activate heartbeat support” option. Regularly ping client via heartbeat exten-
sion messages

priority option

This is the “priorities string” option. This option takes an argument string. TLS al-
gorithms and protocols to enable. You can use predefined sets of ciphersuites such as
PERFORMANCE, NORMAL, SECURE128, SECURE256.

Check the GnuTLS manual on section “Priority strings” for more information on allowed
keywords

Chapter 9: Other included programs 238

ocsp-response option

2

This is the “the ocsp response to send to client” option. This option takes an argument

file. If the client requested an OCSP response, return data from this file to the client.

list option (-1)
This is the “print a list of the supported algorithms and modes” option. Print a list of

the supported algorithms and modes. If a priority string is given then only the enabled
ciphersuites are shown.

gnutls-serv exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

gnutls-serv See Also

gnutls-cli-debug(1), gnutls-cli(1)

gnutls-serv Examples

Running your own TLS server based on GnuTLS can be useful when debugging clients
and/or GnuTLS itself. This section describes how to use gnutls-serv as a simple HT'TPS
server.
The most basic server can be started as:
gnutls-serv --http
It will only support anonymous ciphersuites, which many TLS clients refuse to use.
The next step is to add support for X.509. First we generate a CA:
certtool --generate-privkey > x509-ca-key.pem
echo ’cn = GnullS test CA’ > ca.tmpl
echo ’ca’ >> ca.tmpl
echo ’cert_signing_key’ >> ca.tmpl
certtool --generate-self-signed --load-privkey x509-ca-key.pem \
--template ca.tmpl --outfile x509-ca.pem

$H hH H P &H

Then generate a server certificate. Remember to change the dns_name value to the name
of your server host, or skip that command to avoid the field.

certtool --generate-privkey > x509-server-key.pem

echo ’organization = GnuTLS test server’ > server.tmpl
echo ’cn = test.gnutls.org’ >> server.tmpl

echo ’tls_www_server’ >> server.tmpl

echo ’encryption_key’ >> server.tmpl

echo ’signing_key’ >> server.tmpl

echo ’dns_name = test.gnutls.org’ >> server.tmpl

H H P P BH P P

Chapter 9: Other included programs 239

$ certtool --generate-certificate --load-privkey x509-server-key.pem \
—--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \
--template server.tmpl --outfile x509-server.pem

For use in the client, you may want to generate a client certificate as well.

certtool --generate-privkey > x509-client-key.pem

echo ’cn = GnuTlLlS test client’ > client.tmpl

echo ’tls_www_client’ >> client.tmpl

echo ’encryption_key’ >> client.tmpl

echo ’signing_key’ >> client.tmpl

certtool --generate-certificate --load-privkey x509-client-key.pem \
--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \
--template client.tmpl --outfile x509-client.pem

©H hH P L BH P

To be able to import the client key/certificate into some applications, you will need to
convert them into a PKCS#12 structure. This also encrypts the security sensitive key with
a password.

$ certtool --to-pl2 --load-ca-certificate x509-ca.pem \
--load-privkey x509-client-key.pem --load-certificate x509-client.pem \
--outder --outfile x509-client.pl2

For icing, we’ll create a proxy certificate for the client too.

$ certtool --generate-privkey > x509-proxy-key.pem

$ echo ’cn = GnuTLS test client proxy’ > proxy.tmpl

$ certtool --generate-proxy --load-privkey x509-proxy-key.pem \
--load-ca-certificate x509-client.pem --load-ca-privkey x509-client-key.pem \
--load-certificate x509-client.pem --template proxy.tmpl \
--outfile x509-proxy.pem

Then start the server again:

$ gnutls-serv --http \
--x509cafile x509-ca.pem \
--x509keyfile x509-server-key.pem \
--x509certfile x509-server.pem

Try connecting to the server using your web browser. Note that the server listens to port
5556 by default.

While you are at it, to allow connections using DSA, you can also create a DSA key and
certificate for the server. These credentials will be used in the final example below.

$ certtool --generate-privkey --dsa > x509-server-key-dsa.pem

$ certtool --generate-certificate --load-privkey x509-server-key-dsa.pem \
—--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \
--template server.tmpl --outfile x509-server-dsa.pem

The next step is to create OpenPGP credentials for the server.

Chapter 9: Other included programs 240

gpg --gen-key

...enter whatever details you want, use ’test.gnutls.org’ as name...
Make a note of the OpenPGP key identifier of the newly generated key, here it was 5D1D14D8.
You will need to export the key for GnuTLS to be able to use it.

gpg —a ——export 5D1D14D8 > openpgp-server.txt

gpg ——export 5D1D14D8 > openpgp-server.bin

gpg --export-secret-keys 5D1D14D8 > openpgp-server-key.bin
gpg —a -—export-secret-keys 5D1D14D8 > openpgp-server-key.txt

Let’s start the server with support for OpenPGP credentials:

gnutls-serv --http \
--pgpkeyfile openpgp-server-key.txt \
--pgpcertfile openpgp-server.txt

The next step is to add support for SRP authentication. This requires an SRP password
file created with srptool. To start the server with SRP support:

gnutls-serv —--http \
--srppasswdconf srp-tpasswd.conf \
--srppasswd srp-passwd.txt

Let’s also start a server with support for PSK. This would require a password file created
with psktool.

gnutls-serv --http \
--pskpasswd psk-passwd.txt

Finally, we start the server with all the earlier parameters and you get this command:

gnutls-serv —--http \
--x509cafile x509-ca.pem \
--x509keyfile x509-server-key.pem \
--x509certfile x509-server.pem \
--xb09dsakeyfile x509-server-key-dsa.pem \
--x509dsacertfile x509-server-dsa.pem \
—--pgpkeyfile openpgp-server-key.txt \
—--pgpcertfile openpgp-server.txt \
--srppasswdconf srp-tpasswd.conf \
--srppasswd srp-passwd.txt \
--pskpasswd psk-passwd.txt

9.3 Invoking gnutls-cli-debug

TLS debug client. It sets up multiple TLS connections to a server and queries its capabilities.
It was created to assist in debugging GnuTLS, but it might be useful to extract a TLS
server’s capabilities. It connects to a TLS server, performs tests and print the server’s
capabilities. If called with the ‘-v’ parameter more checks will be performed. Can be used
to check for servers with special needs or bugs.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the gnutls-cli-debug program. This software is released under the GNU
General Public License, version 3 or later.

Chapter 9: Other included programs 241

gnutls-cli-debug help/usage (--help)
This is the automatically generated usage text for gnutls-cli-debug.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

./.1libs/libcmd-cli-debug.a(libcmd_cli_debug_la-cli-debug-args.o): In function ‘translate_op
/home/nmav/cvs/gnutls3.1/src/cli-debug-args.c:502: undefined reference to ‘option_usage_tex
collect2: error: 1d returned 1 exit statusn

debug option (-d)

This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

gnutls-cli-debug exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

gnutls-cli-debug See Also
gnutls-cli(1), gnutls-serv(1)

gnutls-cli-debug Examples

$../src/gnutls-cli-debug localhost

Resolving ’localhost’...

Connecting to ’127.0.0.1:443°...

Checking for SSL 3.0 support... yes

Checking whether %COMPAT is required... no
Checking for TLS 1.0 support... yes

Checking for TLS 1.1 support... no

Checking fallback from TLS 1.1 to... TLS 1.0
Checking for TLS 1.2 support... no

Checking whether we need to disable TLS 1.0... N/A

Checking for Safe renegotiation support... yes

Checking for Safe renegotiation support (SCSV)... yes

Checking for HTTPS server name... not checked

Checking for version rollback bug in RSA PMS... no

Checking for version rollback bug in Client Hello... no
Checking whether the server ignores the RSA PMS version... no
Checking whether the server can accept Hello Extensions... yes

Checking whether the server can accept small records (512 bytes)... yes

Chapter 9: Other included programs 242

Checking whether the server can accept cipher suites not in SSL 3.0 spec... yes
Checking whether the server can accept a bogus TLS record version in the client hell
Checking for certificate information... N/A

Checking for trusted CAs... N/A

Checking whether the server understands TLS closure alerts... partially
Checking whether the server supports session resumption... yes

Checking for export-grade ciphersuite support... no

Checking RSA-export ciphersuite info... N/A

Checking for anonymous authentication support... no

Checking anonymous Diffie-Hellman group info... N/A

Checking for ephemeral Diffie-Hellman support... no

Checking ephemeral Diffie-Hellman group info... N/A
Checking for ephemeral EC Diffie-Hellman support... yes
Checking ephemeral EC Diffie-Hellman group info...
Curve SECP256R1

Checking for AES-GCM cipher support... no

Checking for AES-CBC cipher support... yes

Checking for CAMELLIA cipher support... no

Checking for 3DES-CBC cipher support... yes
Checking for ARCFOUR 128 cipher support... yes
Checking for ARCFOUR 40 cipher support... no
Checking for MD5 MAC support... yes

Checking for SHA1 MAC support... yes

Checking for SHA256 MAC support... no

Checking for ZLIB compression support... no
Checking for max record size... no

Checking for OpenPGP authentication support... no

Chapter 10: Internal Architecture of GnuTLS 243

10 Internal Architecture of GnuTLS

This chapter is to give a brief description of the way GnuTLS works. The focus is to give
an idea to potential developers and those who want to know what happens inside the black
box.

10.1 The TLS Protocol

The main use case for the TLS protocol is shown in Figure 10.1. A user of a library
implementing the protocol expects no less than this functionality, i.e., to be able to set
parameters such as the accepted security level, perform a negotiation with the peer and be
able to exchange data.

set session
parameters

Handshake
“

Figure 10.1: TLS protocol use case.

) Server
Client

10.2 TLS Handshake Protocol

The GnuTLS handshake protocol is implemented as a state machine that waits for input or
returns immediately when the non-blocking transport layer functions are used. The main
idea is shown in Figure 10.2.

Chapter 10: Internal Architecture of GnuTLS 244

gnutlsihandshakel

Awaiting handshake Processing handshake
message message

Figure 10.2: GnuTLS handshake state machine.

Also the way the input is processed varies per ciphersuite. Several implementations of the
internal handlers are available and [gnutls_handshake], page 302 only multiplexes the input
to the appropriate handler. For example a PSK ciphersuite has a different implementation
of the process_client_key_exchange than a certificate ciphersuite. We illustrate the idea
in Figure 10.3.

transport
layer handshake authentication method
T T T
] I I
I I
I I
—> I I
I I
T I
eer
P >
<
€ I
I
T I
- ! |
I
I
I |

Figure 10.3: GnuTLS handshake process sequence.

10.3 TLS Authentication Methods

In GnuTLS authentication methods can be implemented quite easily. Since the required
changes to add a new authentication method affect only the handshake protocol, a simple
interface is used. An authentication method needs to implement the functions shown below.

typedef struct
{

Chapter 10: Internal Architecture of GnuTLS 245

const char *name;

int (*gnutls_generate_server_certificate) (gnutls_session_t, gnutls_buffer_stx*);
int (*gnutls_generate_client_certificate) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_server_kx) (gnutls_session_t, gnutls_buffer_st*);
int (*gnutls_generate_client_kx) (gnutls_session_t, gnutls_buffer_stx*);

int (*gnutls_generate_client_cert_vrfy) (gnutls_session_t, gnutls_buffer_st *);

int (*gnutls_generate_server_certificate_request) (gnutls_session_t,
gnutls_buffer_st *);

int (*gnutls_process_server_certificate) (gnutls_session_t, opaque *,
size_t);

int (*gnutls_process_client_certificate) (gnutls_session_t, opaque *,
size_t);

int (*gnutls_process_server_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_cert_vrfy) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_server_certificate_request) (gnutls_session_t,

opaque *, size_t);
} mod_auth_st;

Those functions are responsible for the interpretation of the handshake protocol messages.
It is common for such functions to read data from one or more credentials_t structures!
and write data, such as certificates, usernames etc. to auth_info_t structures.

Simple examples of existing authentication methods can be seen in auth/psk.c for PSK
ciphersuites and auth/srp.c for SRP ciphersuites. After implementing these functions the
structure holding its pointers has to be registered in gnutls_algorithms.c in the _gnutls_
kx_algorithms structure.

10.4 TLS Extension Handling

As with authentication methods, the TLS extensions handlers can be implemented using
the interface shown below.

typedef int (*gnutls_ext_recv_func) (gnutls_session_t session,
const unsigned char *data, size_t len);
typedef int (*gnutls_ext_send_func) (gnutls_session_t session,
gnutls_buffer_st *extdata);

Here there are two functions, one for receiving the extension data and one for sending.
These functions have to check internally whether they operate in client or server side.

A simple example of an extension handler can be seen in ext/srp.c in GnuTLS’ source
code. After implementing these functions, together with the extension number they handle,
they have to be registered using _gnutls_ext_register in gnutls_extensions.c typically
within _gnutls_ext_init.

1 such as the gnutls_certificate_credentials_t structures

Chapter 10: Internal Architecture of GnuTLS 246

Adding a new TLS extension

Adding support for a new TLS extension is done from time to time, and the process to do
so is not difficult. Here are the steps you need to follow if you wish to do this yourself. For
sake of discussion, let’s consider adding support for the hypothetical TLS extension foobar.

Add configure option like --enable-foobar or --disable-foobar.

This step is useful when the extension code is large and it might be desirable to disable the
extension under some circumstances. Otherwise it can be safely skipped.

Whether to chose enable or disable depends on whether you intend to make the extension
be enabled by default. Look at existing checks (i.e., SRP, authz) for how to model the code.
For example:

AC_MSG_CHECKING([whether to disable foobar support])
AC_ARG_ENABLE (foobar,
AS_HELP_STRING([--disable-foobar],
[disable foobar support]),
ac_enable_foobar=no)
if test x$ac_enable_foobar != xno; then
AC_MSG_RESULT (no)
AC_DEFINE(ENABLE_FOOBAR, 1, [enable foobar])
else
ac_full=0
AC_MSG_RESULT (yes)
fi
AM_CONDITIONAL (ENABLE_FOOBAR, test "$ac_enable_foobar" != "no"

These lines should go in m4/hooks.m4.

Add TANA extension value to extensions_t in gnutls_int.h.
A good name for the value would be GNUTLS_EXTENSION_FOOBAR. Check with

http://www.iana.org/assignments/tls-extensiontype-values for allocated values.
For experiments, you could pick a number but remember that some consider it a bad idea
to deploy such modified version since it will lead to interoperability problems in the future
when the TANA allocates that number to someone else, or when the foobar protocol is
allocated another number.

Add an entry to _gnutls_extensions in gnutls_extensions.c.

A typical entry would be:

int ret;

#if ENABLE_FOOBAR
ret = _gnutls_ext_register (&foobar_ext);
if (ret !'= GNUTLS_E_SUCCESS)
return ret;
#endif

Most likely you’ll need to add an #include "ext/foobar.h", that will contain something
like like:

http://www.iana.org/assignments/tls-extensiontype-values

Chapter 10: Internal Architecture of GnuTLS 247

extension_entry_st foobar_ext = {
.name = "FOOBAR",
.type = GNUTLS_EXTENSION_FOOBAR,
.parse_type = GNUTLS_EXT_TLS,

.recv_func = _foobar_recv_params,
.send_func = _foobar_send_params,
.pack_func = _foobar_pack,
.unpack_func = _foobar_unpack,

.deinit_func = NULL
}

The GNUTLS_EXTENSION_FOOBAR is the integer value you added to gnutls_int.h
earlier. In this structure you specify the functions to read the extension from the hello
message, the function to send the reply to, and two more functions to pack and unpack
from stored session data (e.g. when resumming a session). The deinit function will be
called to deinitialize the extension’s private parameters, if any.

Note that the conditional ENABLE_FOOBAR definition should only be used if step 1 with the
configure options has taken place.

Add new files that implement the extension.

The functions you are responsible to add are those mentioned in the previous step. They
should be added in a file such as ext/foobar.c and headers should be placed in ext/
foobar.h. As a starter, you could add this:
int
_foobar_recv_params (gnutls_session_t session, const opaque * data,
size_t data_size)
{

return O;

}

int
_foobar_send_params (gnutls_session_t session, gnutls_buffer_stx data)
{

return O;

}

int
_foobar_pack (extension_priv_data_t epriv, gnutls_buffer_st * ps)
{

/* Append the extension’s internal state to buffer x*/

return O;

int
_foobar_unpack (gnutls_buffer_st * ps, extension_priv_data_t * epriv)
{

/* Read the internal state from buffer */

Chapter 10: Internal Architecture of GnuTLS 248

return O;

}

The _foobar_recv_params function is responsible for parsing incoming extension data
(both in the client and server).

The _foobar_send_params function is responsible for sending extension data (both in the
client and server).

If you receive length fields that don’t match, return GNUTLS_E_UNEXPECTED_PACKET_LENGTH.
If you receive invalid data, return GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER. You can use
other error codes from the list in Appendix C [Error codes|, page 258. Return 0 on success.

An extension typically stores private information in the session data for later usage. That
can be done using the functions _gnutls_ext_set_session_data and _gnutls_ext_get_
session_data. You can check simple examples at ext/max_record.c and ext/server_
name.c extensions. That private information can be saved and restored across session
resumption if the following functions are set:

The _foobar_pack function is responsible for packing internal extension data to save them
in the session resumption storage.

The _foobar_unpack function is responsible for restoring session data from the session
resumption storage.

Recall that both the client and server, send and receive parameters, and your code most
likely will need to do different things depending on which mode it is in. It may be useful to
make this distinction explicit in the code. Thus, for example, a better template than above
would be:
int
_gnutls_foobar_recv_params (gnutls_session_t session,
const opaque * data,
size_t data_size)
{
if (session->security_parameters.entity == GNUTLS_CLIENT)
return foobar_recv_client (session, data, data_size);
else
return foobar_recv_server (session, data, data_size);

int
_gnutls_foobar_send_params (gnutls_session_t session,
gnutls_buffer_st * data)
{
if (session->security_parameters.entity == GNUTLS_CLIENT)
return foobar_send_client (session, data);
else
return foobar_send_server (session, data);

}

The functions used would be declared as static functions, of the appropriate prototype, in
the same file. When adding the files, you’ll need to add them to ext/Makefile.am as well,
for example:

Chapter 10: Internal Architecture of GnuTLS 249

if ENABLE_FOOBAR
libgnutls_ext_la_SOURCES += ext/foobar.c ext/foobar.h
endif

Add API functions to enable/disable the extension.

It might be desirable to allow users of the extension to request use of the extension, or set
extension specific data. This can be implemented by adding extension specific function calls
that can be added to includes/gnutls/gnutls.h, as long as the LGPLv2.1+ applies. The
implementation of the function should lie in the ext/foobar.c file.

To make the API available in the shared library you need to add the symbol in 1ib/
libgnutls.map, so that the symbol is exported properly.

When writing GTK-DOC style documentation for your new APIs, don’t forget to add
Since: tags to indicate the GnuTLS version the API was introduced in.

Adding a new Supplemental Data Handshake Message

TLS handshake extensions allow to send so called supplemental data handshake messages
[RFC4680]. This short section explains how to implement a supplemental data handshake
message for a given TLS extension.

First of all, modify your extension foobar in the way, the that flags session->security_
parameters.do_send_supplemental and session->security_parameters.do_recv_
supplemental are set:
int
_gnutls_foobar_recv_params (gnutls_session_t session, const opaque * data,
size_t _data_size)

{

session—>security_parameters.do_recv_supplemental=1;

int
_gnutls_foobar_send_params (gnutls_session_t session, gnutls_buffer_st *extdata)

{

session->security_parameters.do_send_supplemental=1;

}

Furthermore add the functions _foobar_supp_recv_params and _foobar_supp_send_
params to _foobar.h and _foobar.c. The following example code shows how to send a
“Hello World” string in the supplemental data handshake message:
int
_foobar_supp_recv_params(gnutls_session_t session, const opaque *data, size_t _data.
{
uint8_t len = _data_size;
unsigned char *msg;

Chapter 10: Internal Architecture of GnuTLS 250

msg = gnutls_malloc(len);
if (msg == NULL) return GNUTLS_E_MEMORY_ERROR;

memcpy (msg, data, len);
msg[len]="\0";

/* do something with msg */
gnutls_free(msg) ;

return len;

b
int
_foobar_supp_send_params (gnutls_session_t session, gnutls_buffer_st *buf)
{
unsigned char *msg = "hello world";
int len = strlen(msg);
_gnutls_buffer_append_data_prefix(buf, 8, msg, len);
return len;
X

Afterwards, add the new supplemental data handshake message to 1lib/gnutls_
supplemental.c by adding a new entry to the _gnutls_supplemental[] structure

gnutls_supplemental_entry _gnutls_supplementall] =
{

{"foobar",
GNUTLS_SUPPLEMENTAL_FOOBAR_DATA,
_foobar_supp_recv_params,
_foobar_supp_send_params},

{0, 0, 0, O}

+
You have to include your foobar.h header file as well:

#include "foobar.h"
Lastly, add the new supplemental data type to 1ib/includes/gnutls/gnutls.h:

typedef enum

{
GNUTLS_SUPPLEMENTAL_USER_MAPPING_DATA = O,
GNUTLS_SUPPLEMENTAL_FOOBAR_DATA = 1

} gnutls_supplemental_data_format_type_t;

Heartbeat extension.

One such extension is HeartBeat protocol (RFC6520: https://tools.ietf.org/html/
rfc6520) implementation. To enable it use option —heartbeat with example client and
server supplied with gnutls:

https://tools.ietf.org/html/rfc6520
https://tools.ietf.org/html/rfc6520

Chapter 10: Internal Architecture of GnuTLS 251

./doc/credentials/gnutls-http-serv —--priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 --he
./src/gnutls-cli --priority "NORMAL:-CIPHER-ALL:+NULL" -d 100 localhost -p 5556 --ir

After that pasting
**xHEARTBEAT **

command into gnutls-cli will trigger corresponding command on the server and it will send
HeartBeat Request with random length to client.

Another way is to run capabilities check with:

./doc/credentials/gnutls-http-serv -d 100 --heartbeat
./src/gnutls-cli-debug localhost -p 5556

10.5 Cryptographic Backend

Today most new processors, either for embedded or desktop systems include either instruc-
tions intended to speed up cryptographic operations, or a co-processor with cryptographic
capabilities. Taking advantage of those is a challenging task for every cryptographic appli-
cation or library. Unfortunately the cryptographic library that GnuTLS is based on takes no
advantage of these capabilities. For this reason GnuTLS handles this internally by following
a layered approach to accessing cryptographic operations as in Figure 10.4.

TLS layer
Cryptography
Provider Layer

— —
Cryptographic External cryptographic
Library provider

Ebgcrypil Eettle j /dev/crypto CPU-optimized

Kernel optimized cryptography

cryptography

Figure 10.4: GnuTLS cryptographic back-end design.

The TLS layer uses a cryptographic provider layer, that will in turn either use the default
crypto provider — a software crypto library, or use an external crypto provider, if available
in the local system. The reason of handling the external cryptographic provider in GnuTLS

Chapter 10: Internal Architecture of GnuTLS 252

and not delegating it to the cryptographic libraries, is that none of the supported cryp-
tographic libraries support /dev/crypto or CPU-optimized cryptography in an efficient
way.

Cryptographic library layer

The Cryptographic library layer, currently supports only libnettle. Older versions of
GnuTLS used to support libgcrypt, but it was switched with nettle mainly for performance
reasons? and secondary because it is a simpler library to use. In the future other
cryptographic libraries might be supported as well.

External cryptography provider

Systems that include a cryptographic co-processor, typically come with kernel drivers to
utilize the operations from software. For this reason GnuTLS provides a layer where each
individual algorithm used can be replaced by another implementation, i.e., the one provided
by the driver. The FreeBSD, OpenBSD and Linux kernels® include already a number of
hardware assisted implementations, and also provide an interface to access them, called
/dev/crypto. GnuTLS will take advantage of this interface if compiled with special options.
That is because in most systems where hardware-assisted cryptographic operations are not
available, using this interface might actually harm performance.

In systems that include cryptographic instructions with the CPU’s instructions set, using
the kernel interface will introduce an unneeded layer. For this reason GnuTLS includes
such optimizations found in popular processors such as the AES-NI or VIA PADLOCK
instruction sets. This is achieved using a mechanism that detects CPU capabilities and
overrides parts of crypto back-end at runtime. The next section discusses the registration
of a detected algorithm optimization. For more information please consult the GnuTLS
source code in lib/accelerated/.

Overriding specific algorithms

When an optimized implementation of a single algorithm is available, say a hardware as-
sisted version of AES-CBC then the following (internal) functions, from crypto-backend.h,
can be used to register those algorithms.
e gnutls_crypto_single_cipher_register: To register a cipher algorithm.
e gnutls_crypto_single_digest_register: To register a hash (digest) or MAC algo-
rithm.

Those registration functions will only replace the specified algorithm and leave the rest of
subsystem intact.

Overriding the cryptographic library

In some systems, that might contain a broad acceleration engine, it might be desirable
to override big parts of the cryptographic back-end, or even all of them. The following
functions are provided for this reason.

e gnutls_crypto_cipher_register: To override the cryptographic algorithms back-
end.

2 See http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html.
3 Check http://home.gna.org/cryptodev-linux/ for the Linux kernel implementation of /dev/crypto.

http://lists.gnu.org/archive/html/gnutls-devel/2011-02/msg00079.html
http://home.gna.org/cryptodev-linux/

Chapter 10: Internal Architecture of GnuTLS 253

e gnutls_crypto_digest_register: To override the digest algorithms back-end.
e gnutls_crypto_rnd_register: To override the random number generator back-end.

e gnutls_crypto_bigint_register: To override the big number number operations

back-end.

e gnutls_crypto_pk_register: To override the public key encryption back-end. This is
tied to the big number operations so either none or both of them should be overridden.

Appendix A: Upgrading from previous versions 254

Appendix A Upgrading from previous versions

The GnuTLS library typically maintains binary and source code compatibility across ver-
sions. The releases that have the major version increased break binary compatibility but
source compatibility is provided. This section lists exceptional cases where changes to
existing code are required due to library changes.

Upgrading to 2.12.x from previous versions

GnuTLS 2.12.x is binary compatible with previous versions but changes the semantics of
gnutls_transport_set_lowat, which might cause breakage in applications that relied on
its default value be 1. Two fixes are proposed:

e Quick fix. Explicitly call gnutls_transport_set_lowat (session, 1); after
[gnutls_init], page 307.

e Long term fix. Because later versions of gnutls abolish the functionality of
using the system call select to check for gnutls pending data, the function
[gnutls_record_check_pending], page 323 has to be used to achieve the same
functionality as described in Section 6.5.1 [Asynchronous operation], page 120.

Upgrading to 3.0.x from 2.12.x

GnuTLS 3.0.x is source compatible with previous versions except for the functions listed
below.

Old function Replacement

gnutls_transport_set_ To replace its functionality the function
lowat [gnutls_record_check_pending], page 323 has to be
used, as described in Section 6.5.1 [Asynchronous
operation|, page 120

They are replaced by the safer function
[gnutls_session_get_random]|, page 331

gnutls_session_
get_server_random,
gnutls_session_get_
client_random

gnutls_session_get_
master_secret

gnutls_transport_set_
global_errno

gnutls_x509_privkey_
verify_data
gnutls_certificate_
verify_peers

Replaced by the keying material exporters dis-
cussed in Section 6.12.4 [Keying Material Exporters],
page 142

Replaced by using the system’s errno fascility or
[gnutls_transport_set_errno], page 346.

Replaced by [gnutls_pubkey_verify_datal, page 501.

Replaced by [gnutls_certificate_verify_peers2],

page 287.

Appendix A: Upgrading from previous versions 255

gnutls_psk_netconf_
derive_key

gnutls_session_set_
finished_function

gnutls_ext_register

gnutls_certificate_
get_x509_crls,
gnutls_certificate_
get_x509_cas
gnutls_certificate_
get_openpgp_keyring
gnutls_ia_x*

Removed. The key derivation function was never
standardized.

Removed.

Removed. Extension registration API is now inter-
nal to allow easier changes in the API.

Removed to allow updating the internal structures.
Replaced by [gnutls_certificate_get_issuer], page 275.
Removed.

Removed. The inner application extensions were
completely removed (they failed to be standardized).

Upgrading to 3.1.x from 3.0.x

GnuTLS 3.1.x is source and binary compatible with GnuTLS 3.0.x releases. Few functions
have been deprecated and are listed below.

01d function
gnutls_pubkey_verify_
hash

gnutls_pubkey_verify_
data

Replacement

The function [gnutls_pubkey_verify_hash2], page 502
is provided and is functionally equivalent and safer
to use.

The function [gnutls_pubkey_verify_data2], page 502
is provided and is functionally equivalent and safer
to use.

Appendix B: Support 256

Appendix B Support

B.1 Getting Help

A mailing list where users may help each other exists, and you can reach it by sending
e-mail to help-gnutls@gnu.org. Archives of the mailing list discussions, and an interface
to manage subscriptions, is available through the World Wide Web at http://lists.gnu.
org/mailman/listinfo/help-gnutls.

A mailing list for developers are also available, see http://www.gnu.org/software/
gnutls/lists.html. Bug reports should be sent to bug-gnutls@gnu.org, see Section B.3
[Bug Reports|, page 256.

B.2 Commercial Support
Commercial support is available for users of GnuTLS. The kind of support that can be
purchased may include:

e Implement new features. Such as a new TLS extension.

e Port GnuTLS to new platforms. This could include porting to an embedded platforms
that may need memory or size optimization.

e Integrating TLS as a security environment in your existing project.

e System design of components related to TLS.

If you are interested, please write to:

Simon Josefsson Datakonsult
Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GnuTLS and would like to be mentioned here,
contact the authors.

B.3 Bug Reports

If you think you have found a bug in GnuTLS, please investigate it and report it.

e Please make sure that the bug is really in GnuTLS, and preferably also check that it
hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that can
be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

mailto:help-gnutls@gnu.org
http://lists.gnu.org/mailman/listinfo/help-gnutls
http://lists.gnu.org/mailman/listinfo/help-gnutls
http://www.gnu.org/software/gnutls/lists.html
http://www.gnu.org/software/gnutls/lists.html
mailto:bug-gnutls@gnu.org

Appendix B: Support 257

If your bug report is good, we will do our best to help you to get a corrected version of the
software; if the bug report is poor, we won’t do anything about it (apart from asking you
to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gnutlsOgnu.org’

B.4 Contributing

If you want to submit a patch for inclusion — from solving a typo you discovered, up to
adding support for a new feature — you should submit it as a bug report, using the process
in Section B.3 [Bug Reports|, page 256. There are some things that you can do to increase
the chances for it to be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the copyright
of your work to the Free Software Foundation. This is to protect the freedom of the project.
If you have not already signed papers, we will send you the necessary information when you
submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines are
common sense. For code contributions, a number of style guides will help you:

e Coding Style. Follow the GNU Standards document.

If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code before submitting your work.

e Use the unified diff format ‘diff -u’.
e Return errors. No reason whatsoever should abort the execution of the library. Even

memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

e Supply a ChangeLog and NEWS entries, where appropriate.

Appendix C: Error Codes and Descriptions 258

Appendix C Error Codes and Descriptions

The error codes used throughout the library are described below. The return code GNUTLS_
E_SUCCESS indicate successful operation, and is guaranteed to have the value 0, so you can
use it in logical expressions.

0 GNUTLS_E_SUCCESS Success.
-3 GNUTLS_E_UNKNOWN _- Could not negotiate a sup-
COMPRESSION_ALGORITHM ported compression method.
-6 GNUTLS_E_UNKNOWN _- The cipher type is
CIPHER_TYPE unsupported.
-7 GNUTLS_E_LARGE_PACKET The transmitted packet is too
large (EMSGSIZE).
-8 GNUTLS_E_UNSUPPORTED_- A record packet with illegal
VERSION_PACKET version was received.
-9 GNUTLS_E_UNEXPECTED_- A TLS packet with unexpected
PACKET_LENGTH length was received.
-10 GNUTLS_E_INVALID_SESSION The specified session has been
invalidated for some reason.
-12 GNUTLS_E_FATAL_ALERT _- A TLS fatal alert has been
RECEIVED received.
-15 GNUTLS_E_UNEXPECTED _- An unexpected TLS packet was
PACKET received.
-16 GNUTLS_E_WARNING_- A TLS warning alert has been
ALERT_RECEIVED received.
-18 GNUTLS_E_ERROR_IN _- An error was encountered
FINISHED_PACKET at the TLS Finished packet
calculation.
-19 GNUTLS_E_UNEXPECTED _- An unexpected TLS handshake
HANDSHAKE_PACKET packet was received.
-21 GNUTLS_E_.UNKNOWN_- Could not negotiate a sup-
CIPHER_SUITE ported cipher suite.
-22 GNUTLS_E_.UNWANTED_- An algorithm that is not en-
ALGORITHM abled was negotiated.
-23 GNUTLS_E_MPI_SCAN_- The scanning of a large integer
FAILED has failed.
-24 GNUTLS_E_DECRYPTION _- Decryption has failed.
FAILED
-25 GNUTLS_.E_.MEMORY_ERROR, Internal error in memory
allocation.
-26 GNUTLS_E_- Decompression of the TLS
DECOMPRESSION_FAILED record packet has failed.
-27 GNUTLS_E_COMPRESSION _- Compression of the TLS record
FAILED packet has failed.
-28 GNUTLS_E_AGAIN Resource temporarily unavail-

able, try again.

Appendix C: Error Codes and Descriptions

-29
-30
-31
-32

-33
-34

-35

-37

-38

-39

-46
-47

-48

-50

-51

-52
-53
-54
-55

GNUTLS_E_EXPIRED

GNUTLS_E_.DB_ERROR
GNUTLS_E_SRP_PWD_ERROR
GNUTLS_E_INSUFFICIENT -
CREDENTIALS
GNUTLS_E_HASH_FAILED
GNUTLS_E_BASE64_-
DECODING_ERROR
GNUTLS_E_MPI_PRINT -
FAILED
GNUTLS_E_REHANDSHAKE

GNUTLS_E_GOT_-
APPLICATION_DATA

GNUTLS_E_RECORD_LIMIT -
REACHED

GNUTLS.E_ENCRYPTION -
FAILED
GNUTLS_E_CERTIFICATE.-
ERROR

GNUTLS_E_PK_-
ENCRYPTION_FAILED
GNUTLS.E_PK_-
DECRYPTION_FAILED
GNUTLS_E_PK_SIGN_FAILED
GNUTLS_E_X509-_-
UNSUPPORTED_CRITICAL.-
EXTENSION
GNUTLS_E_KEY_USAGE._-
VIOLATION
GNUTLS_E_NO._-
CERTIFICATE_FOUND
GNUTLS_E_INVALID -
REQUEST
GNUTLS_E_SHORT -
MEMORY_BUFFER
GNUTLS_E_.INTERRUPTED
GNUTLS_E_PUSH_ERROR
GNUTLS_E_PULL_ERROR
GNUTLS.E_RECEIVED.-
ILLEGAL_PARAMETER

The requested session has
expired.

Error in Database backend.
Error in password file.
Insufficient credentials for that
request.

Hashing has failed.

Base64 decoding error.

Could not export a large
integer.

Rehandshake was requested by
the peer.

TLS Application data were re-
ceived, while expecting hand-
shake data.

The wupper limit of record
packet sequence numbers has
been reached. Wow!
Encryption has failed.

Error in the certificate.

Public key encryption has
failed.

Public key decryption has
failed.

Public key signing has failed.
Unsupported critical extension
in X.509 certificate.

Key usage violation in certifi-
cate has been detected.

No certificate was found.
The request is invalid.

The given memory buffer is too
short to hold parameters.
Function was interrupted.
Error in the push function.
Error in the pull function.

An illegal parameter has been
received.

259

Appendix C: Error Codes and Descriptions

-56

-o7

-58

-59

-60

-61

-62

-63

-64

-67

-68

-69

-70

-71

-72

-73

-74

-75

-76

=77

-78

-79

GNUTLS_E_.REQUESTED _-
DATA_NOT_AVAILABLE

GNUTLS_E_.PKCS1_-WRONG_-

PAD
GNUTLS_E_RECEIVED _-
ILLEGAL_EXTENSION
GNUTLS_E_.INTERNAL.-
ERROR
GNUTLS_E_CERTIFICATE _-
KEY_MISMATCH

GNUTLS_E_.UNSUPPORTED _-

CERTIFICATE_TYPE
GNUTLS_E_X509--
UNKNOWN_SAN

GNUTLS_E_DH_PRIME_-
UNACCEPTABLE

GNUTLS_E_FILE_ERROR

GNUTLS_E_ASN1_ELEMENT _-

NOT_FOUND
GNUTLS_E_ASN1_-
IDENTIFIER_NOT_FOUND
GNUTLS_E_ASN1_DER._-
ERROR
GNUTLS_E_ASN1_VALUE.-
NOT_FOUND

GNUTLS_E_ASN1_GENERIC_-

ERROR
GNUTLS_E_ASN1_VALUE._-
NOT_VALID
GNUTLS_E_ASN1_TAG_-
ERROR
GNUTLS_E_ASN1_TAG_-
IMPLICIT
GNUTLS_E_ASN1_TYPE_-
ANY_ERROR
GNUTLS_E_ASN1_SYNTAX_-
ERROR
GNUTLS_E_ASN1_DER._-
OVERFLOW
GNUTLS_E_-TOO_-MANY _-
EMPTY_PACKETS
GNUTLS_E_OPENPGP_UID_-
REVOKED

The requested data were not
available.

Wrong padding in PKCS1
packet.

An illegal TLS extension was
received.

GnuTLS internal error.

The certificate and the given
key do not match.

The certificate type is not
supported.

Unknown Subject Alternative
name in X.509 certificate.

The Diffie-Hellman prime sent
by the server is not acceptable
(not long enough).

Error while reading file.

ASN1 parser: Element was not
found.

ASNI1 parser: Identifier was not
found

ASN1 parser: Error in DER
parsing.

ASNT1 parser: Value was not
found.

ASNT1 parser: Generic parsing
error.

ASN1 parser: Value is not
valid.

ASN1 parser: Error in TAG.

ASN1 parser: error in implicit
tag

ASN1 parser: Error in type
"ANY’.

ASNT parser: Syntax error.

ASNT1 parser: Overflow in DER
parsing.

Too many empty record pack-
ets have been received.

The OpenPGP User ID is
revoked.

260

Appendix C: Error Codes and Descriptions

-80

-81

-84

-86

-87

-88

-89

-90

-91

-93

-94

-95

-96

-97

-98

-99

-100

-101

-102

-103

-104

GNUTLS_E_.UNKNOWN_PK _-
ALGORITHM
GNUTLS_E_.TOO_MANY _-
HANDSHAKE_PACKETS
GNUTLS_E_NO._-
TEMPORARY_RSA_PARAMS
GNUTLS_E_NO._-
COMPRESSION _-
ALGORITHMS
GNUTLS_E_NO_CIPHER _-
SUITES
GNUTLS_E_OPENPGP _-
GETKEY_FAILED
GNUTLS_E_PK_SIG_VERIFY _-
FAILED
GNUTLS_E_ILLEGAL_SRP _-
USERNAME
GNUTLS_E_SRP_PWD_-
PARSING_ERROR
GNUTLS_E_NO_-
TEMPORARY_DH_PARAMS
GNUTLS_E_.OPENPGP -
FINGERPRINT -
UNSUPPORTED
GNUTLS_E_X509-_-
UNSUPPORTED_ATTRIBUTE
GNUTLS_E_.UNKNOWN_-
HASH_ALGORITHM
GNUTLS_E_.UNKNOWN_-
PKCS_.CONTENT_TYPE
GNUTLS_E_.UNKNOWN_-
PKCS_BAG_TYPE
GNUTLS_E_INVALID _-
PASSWORD
GNUTLS_E_MAC_VERIFY _-
FAILED
GNUTLS_E_.CONSTRAINT_-
ERROR
GNUTLS_E_-WARNING_IA _-
IPHF_RECEIVED
GNUTLS_E-WARNING_IA _-
FPHF_RECEIVED
GNUTLS_E_TA_VERIFY _-
FAILED

An unknown public key algo-
rithm was encountered.

Too many handshake packets
have been received.

No temporary RSA parameters
were found.

No supported compression al-
gorithms have been found.

No supported cipher suites
have been found.

Could not get OpenPGP key.

Public key signature verifica-
tion has failed.

The SRP username supplied is
illegal.

Parsing error in password file.

No temporary DH parameters
were found.

The OpenPGP fingerprint is
not supported.

The certificate has unsup-
ported attributes.

The hash
unknown.
The PKCS structure’s content
type is unknown.

The PKCS structure’s bag type
is unknown.

algorithm s

The given password contains
invalid characters.

The Message Authentication
Code verification failed.

Some constraint limits were
reached.

Received a TLS/IA Intermedi-
ate Phase Finished message
Received a TLS/IA Final
Phase Finished message
Verifying TLS/TA phase check-
sum failed

261

Appendix C: Error Codes and Descriptions

-105

-106

-107

-108

-109

-110

-201

-202

-203

-204

-205

-206

-207

-208

-209

-210

-211

-212

-213

-214
-215

-216

GNUTLS_E_.UNKNOWN_-
ALGORITHM
GNUTLS_E_.UNSUPPORTED _-
SIGNATURE_ALGORITHM
GNUTLS_E_SAFE._-
RENEGOTIATION_FAILED
GNUTLS_E_UNSAFE_-
RENEGOTIATION_DENIED
GNUTLS_E_.UNKNOWN_SRP _-
USERNAME
GNUTLS_E_.PREMATURE_-
TERMINATION
GNUTLS_E_BASE64_-
ENCODING_ERROR
GNUTLS_E_INCOMPATIBLE _-
GCRYPT_LIBRARY
GNUTLS_E_INCOMPATIBLE _-
LIBTASN1_LIBRARY
GNUTLS_E_OPENPGP -
KEYRING_ERROR
GNUTLS_E_X509--
UNSUPPORTED_OID
GNUTLS_E_RANDOM_FAILED
GNUTLS_E_BASE64_-
UNEXPECTED_HEADER -
ERROR
GNUTLS_E_OPENPGP -
SUBKEY_ERROR
GNUTLS_E_CRYPTO._-
ALREADY_REGISTERED
GNUTLS_E_HANDSHAKE_-
TOO_LARGE
GNUTLS_E_.CRYPTODEV _-
IOCTL_ERROR
GNUTLS_E_.CRYPTODEV _-
DEVICE_ERROR
GNUTLS_E_CHANNEL._-
BINDING_NOT_AVAILABLE
GNUTLS_E_.BAD_COOKIE
GNUTLS_E_OPENPGP _-
PREFERRED_KEY_ERROR
GNUTLS_E_INCOMPAT_DSA _-
KEY_WITH_TLS_PROTOCOL

The specified algorithm or pro-
tocol is unknown.

The signature algorithm is not
supported.

Safe renegotiation failed.

Unsafe renegotiation denied.

The SRP username supplied is
unknown.

The TLS connection was non-
properly terminated.

Base64 encoding error.

The crypto library version is
too old.

The tasnl library version is too
old.

Error loading the keyring.
The OID is not supported.

Failed to acquire random data.
Base64 unexpected header
error.

Could not find OpenPGP
subkey.

There is already a crypto algo-
rithm with lower priority.

The handshake data size is too
large.

Error interfacing with
/dev/crypto

Error opening /dev/crypto

Channel binding data not
available

The cookie was bad.

The OpenPGP key has not a
preferred key set.

The given DSA key is incom-
patible with the selected TLS
protocol.

262

Appendix C: Error Codes and Descriptions

-292

-293

-300
-301

-302
-303

-305

-306
-307

-308

-309

-310

-311

-312

-313

-314

-315

-316

-317

-318

-319
-320

-321

-322

GNUTLS_E_HEARTBEAT _-
PONG_RECEIVED
GNUTLS_E_HEARTBEAT _-
PING_RECEIVED
GNUTLS_E_PKCS11_ERROR
GNUTLS_E_PKCS11_LOAD_-
ERROR
GNUTLS_E_PARSING_ERROR
GNUTLS_E_PKCS11_PIN_-
ERROR
GNUTLS_E_PKCS11_SLOT -
ERROR
GNUTLS_E_.LOCKING_ERROR
GNUTLS_E_PKCS11_-
ATTRIBUTE_ERROR
GNUTLS_E_PKCS11_DEVICE_-
ERROR
GNUTLS_E_PKCS11_DATA _-
ERROR

GNUTLS_E_PKCS11_-
UNSUPPORTED_FEATURE.-
ERROR
GNUTLS_E_PKCS11_KEY _-
ERROR
GNUTLS_E_PKCS11_PIN_-
EXPIRED
GNUTLS_E_PKCS11_PIN_-
LOCKED
GNUTLS_E_PKCS11_-
SESSION_ERROR
GNUTLS_E_PKCS11_-
SIGNATURE_ERROR
GNUTLS_E_PKCS11_TOKEN_-
ERROR
GNUTLS_E_PKCS11_USER._-
ERROR
GNUTLS_E_CRYPTO_INIT_-
FAILED
GNUTLS_E_-TIMEDOUT
GNUTLS_E_USER_ERROR

GNUTLS_E_ECC_NO._-
SUPPORTED_CURVES
GNUTLS_E_ECC_-
UNSUPPORTED_CURVE

A heartbeat pong message was
received.

A heartbeat ping message was
received.

PKCS #11 error.

PKCS #11 initialization error.

Error in parsing.
Error in provided PIN.

PKCS #11 error in slot

Thread locking error
PKCS #11 error in attribute

PKCS #11 error in device
PKCS #11 error in data

PKCS #11
feature

unsupported

PKCS #11 error in key

PKCS #11 PIN expired
PKCS #11 PIN locked

PKCS #11 error in session
PKCS #11 error in signature
PKCS #11 error in token
PKCS #11 user error

The initialization of crypto
backend has failed.

The operation timed out

The operation was cancelled
due to user error

No supported ECC curves were
found

The curve is unsupported

263

Appendix C: Error Codes and Descriptions

-323

-324

-325

-326

-327

-328

-329
-330

-331

-332

-333

-334

-340

-341

-342

-343

GNUTLS_E_PKCS11_-
REQUESTED_OBJECT_NOT_-
AVAILBLE
GNUTLS_E_CERTIFICATE._-
LIST_UNSORTED

GNUTLS_E_ILLEGAL._-
PARAMETER

GNUTLS_E_NO_PRIORITIES_
WERE_SET

GNUTLS_E_X509-_-
UNSUPPORTED_EXTENSION

GNUTLS_E_SESSION_EOF

GNUTLS_E_-TPM_ERROR
GNUTLS_E_-TPM_KEY _-
PASSWORD_ERROR
GNUT