OSS Developer’s Guide

Michael Schottner, Marc-Florian Miiller, Kim-Thomas Mdéller
(Universitat Diisseldorf)

24. April 2009

1 Introduction

The Object Sharing Service (OSS) implements shared objects for grid applications.
OSS is built as a shared library. Linking OSS to user applications allows sharing
of objects residing in volatile memory across multiple nodes in the grid. An object
in this context is a replicated volatile memory region, dynamically allocated by an
application or mapped into memory from a file.

Objects may contain scalars, references, and code. Therefore, OSS handles con-
current read and write access to objects and maintains the consistency of replicated
objects. Persistence for objects stored in files are provided by XtreemFS, fault to-
lerance in contrast is provided by the grid checkpointing mechanisms developed in
WP3.3. Currently, OSS supports [A32 and AMD64 compatible processors.

This report is structured as follows. Section 7?7 describes how OSS implements
the XOSAGA API. Section ?? explains OSS’ modular architecture and its network
protocol. Section ?? documents the internal interfaces of the modules. Finally,
section 77 describes step by step how to extend OSS with custom consistency
models.

2 API

OSS’s services are available via the XOSAGA API [?]. Besides, we have implemen-
ted a POSIX support library, which emulates POSIX’s malloc and free calls for
unmodified legacy applications. Both the XOSAGA API and the interface of the
POSIX support library are based on the internal OSS interface which has been
described in the OSS interface and user guide [?].

1

3 Architecture

Developed as a modularized system, OSS contains three main modules cache ma-
nagement, consistency models and network communication (see figure 77).

Legacy Applications

XOSAGA API
POSIX Support Library
i Cache Management
i !)
i ! £e
| Zone | ' [S
1 o O
i | | g l zZW0n
Hea,

! - =
1
H Object | |

Communication

i
E | Message Exchange |
i | Overlay Network |
1
{ TCP || UDP |

Abbildung 1: OSS architecture

3.1 Cache Management

OSS’s cache management allocates objects from a global distributed object space.
At a high level of abstraction, objects are represented as chunks of memory. The
interface to the cache management is modeled after dynamic memory allocation on
the heap, a technique well-known to most programmers. OSS does not interprete
the content of objects, such that it allows to share objects in virtually all program-
ming languages. The cache management comprises object allocation, replication
and basic synchronization services used by the consistency models.

3.2 Consistency Models

OSS is designed to support multiple consistency models for shared data synchroni-
zation. Application developers are able to allocate multiple objects, each coupled

with a consistency model suitable for application semantics. Currently, OSS sup-
ports strong, transactional and explicit consistency.

Strong Consistency Using the strong consistency memory modifications are
immediately visible on subsequent reads. It is implemented using a modified version
of the MESI cache coherence protocol, where the state Exclusive has been omitted.
Strong consistent objects (in current OSS version allocated at page granularity)
can obtain the following states (see figure ?7?):

MODIFIED EXCLUSIVE Object is modified and exclusive accessible by one node
SHARED Object is shared among multiple nodes

INVALID Object is invalid

Int. Read/Write

Modified

Exclusive

Ext. Write Ext. Read

Int. Write Int. Write

Int. Read
Ext. Read

Ext. Write

Abbildung 2: Finite state machine of strong consistency

In general, if a node gains write access to a specific object, it changes into
modified state. Simultaneously, on all other nodes the object changes into invalid
state. Gaining read access instead, the object changes into shared state. Any other
node having exclusive access also changes into shared state.

Transactional Consistency Transactional consistency also provides strong con-
sistency but multiple operations are bundled into atomic transactions. Possibly
occuring conflicts among transactions will be resolved transparently to applicati-
ons in the background. The developer has only to define transaction boundaries
by placing the following two function calls into the program code, defining begin
and end of transactions:

oss_transaction_id_t oss_bot(...)

int oss_eot(oss_transaction_id_t)
Transactional consistent objects can obtain the following states (see figure ?77?):
UNBOUND Memory page has not been accessed

BOUND READ Memory page has been accessed for reading

BOUND WRITE Memory page has been accessed for writing

Int. Read Int. Write

Bound Bound
Read Write

Int. Write

Abbildung 3: Finite state machine of transactional consistency

Explicit Consistency FEzxplicit consistency is a pseudo consistency model. Me-
mory allocated under this consistency constraints will never be synchronized and
behaves like local allocated memory (e.g. memory allocation via malloc). But the
memory allocation scheme still follows the semantics of OSS. As in other consi-
stency models, objects using this consistency model reside at the same memory
address on all peers.

3.3 Name Service

OSS contains a simple internal name service, which applications can use to sto-
re and retrieve object IDs. The name service has a tree structure, with slas-
hes (/) separating directory levels. An application or OSS module can set a va-
lue for a name by calling oss_nameservice_set and retrieve a value by calling
oss_nameservice_get. A value that has not yet been set is treated as object 1D
NULL.

3.4 Network Communication

The network module has two layers. The lower layer implements the binding of
transport protocols like TCP (Transmission Control Protocol) or UDP (User Da-
tagram Protocol) to the overlay network and assembles incoming data fragments
to PDUs (Protocol Data Units). Furthermore, it implements fault tolerance me-
chanisms if not supported by the transport protocol itself. Currently, OSS uses
TCP, only.

The upper layer implements functionality for establishing and managing the
overlay network. Peers will be grouped together, coordinated by one super peer
node which manages inter group communication and group internal tasks (e.g.
transaction validation). The super peer will be elected on the basis of its proper-
ties (e.g. performance, network latency and bandwidth, average cpu load, ...).
Moreover the overlay network routes messages among nodes and is dynamically
reconfigurable by using statistical data collections. The communication module
implements an interface to abstract messaging from the underlying network struc-
ture.

For efficiency reasons, OSS implements its own binary request/reply network
protocol. Every PDU begins with a header followed by an optional payload part.
All fields of the PDU are described in detail (see figure ?7?)

Type Primary type of a network message. This field coincide with the modules
which have registered a specific message type. All messages of a type are
passed to the registered handler of a module. The communication module
distinguishes request and response messages by inspecting the MSB (Most

5

Bit
Byte n 0123456 7 8 91011121314151617 18192021 222324 252627 2829 30 31

0 Type Subtype Options Result code
4 TTL <reserved>
8 Sequence number
12 Source ID
16 Destination ID
20 Origin Destination ID ™
24 Payload length
28 Payload

(variable length)

Abbildung 4: Structure of Protocol Data Units in OSS

Significant Bit). An unset bit defines a request message, a set bit a response
message. A pair of request and response messages differ only in the MSB
referred to the type field.

Subtype Subtype of a network message. This field is used by modules to distin-
guish various messages of the same type.

Options Internally used bit field.

Result code In response messages this field carries the result code of the pre-
viously processed network request.

TTL Time-to-Live field, which prevents an endless routing/forwarding of mes-
sages in the overlay network. This field is decremented on every message
routing /forwarding,.

Sequence number Consecutive number for assigning reponse to request messa-
ges and to preserve message ordering.

Source ID Node ID of the sender.

Destination ID Node ID of the recipient (modified in case of message forwar-
ding).

Origin dst. ID Node ID of the origin recipient (still unmodified in case of mes-
sage forwarding).

Payload length Length of payload.

Payload Payload.

4 Internal Interfaces

As mentioned in section 7?7, OSS’ services are available through the XOSAGA APL.
The internal interfaces of OSS’ modules are used only inside the shared library and
therefore will not be exported to user applications. The following sections describe
the module interfaces of cache management and network communication.

4.1 Cache Management

Each object has a unique identifier within the shared object space. To enable
efficient parallel allocation of objects, nodes pre-reserve heaps of objects using
the distributed allocator. The cache management comprises different allocators to
partition the per-node heaps. When creating an object, an application can specify
which allocator to use, depending on the object’s intended usage. Access control
and storage management provide basic mechanisms to keep objects consistent.

4.1.1 High-level object management (object)

The high-level object management module dispatches object creation and object
deletion to the respective heap. The module’s interface consists of the following
four functions:

e The function memory_alloc reserves memory for the object on a heap, binds
it to the specified consistency model and attributes, and returns a reference
to the newly created object.

e The function memory_free frees the memory pointed to by the reference.

e The function memory_mmap creates an object as a copy-on-write mapping of
the specified file. If the file is unspecified, the function creates an anonymous

mapping.

e The function memory_munmap destroys an object which is a file mapping or
an anonymous mapping.

4.1.2 Object allocation (heaps)

During object creation, the high-level object management allows an application to
choose the heap on which the object will be allocated. OSS currently implements
three heap allocators:

e The page allocator always reserves at least one hardware page (4 KB). This
allocator perfectly avoids false sharing situations, but it incurs a high memory
overhead for small objects.

The mspaces allocator integrates the standard allocator from GNU /Linux’s
standard C runtime library. This allocator is very efficient in terms of memory
usage, but depending on the application’s object access pattern, false sharing
situations can degrade performance.

The millipage allocator implements the Multiview /Millipage approach avoi-
ding false sharing [?]. This allocator tries to avoid false sharing despite low
memory overhead. It uses special features from the access control module to
efficiently place objects.

4.1.3 Access control and storage management (mmu)

The access control and storage management module abstracts from hardware and
operating system features. By means of this module, consistency models access
object data and keep track of object state. The following functions are related to
information about objects:

The function mmu_get_consistency_model retrieves the consistency model
that a given address is bound to.

The function mmu_is_valid_address determines whether an address is known
to the local node.

The functions mmu_set_state and mmu_get_state access an object’s state
as defined by the respective consistency model.

Consistency models can store more information about an object’s state using
the functions mmu_set_data and mmu_get_data.

The functions mmu_lock, mmu_unlock and mmu_trylock synchronize access
to object metadata.

The following functions manage the physical backing store for several objects:

The function mmu_alloc is called by the heap allocators to set up the physical
backing store for several objects.

The function mmu_setup_region sets up a page-aligned memory region at a
specified address. This function applies to locally created regions as well as
to remote regions.

The function mmu_discover_region discovers a region using the grid me-
mory allocator and sets it up locally.

The function mmu_free frees a region from physical backing store.

8

e The function mmu_foreach_page runs a function for each page in a memory
region.

The storage management functions read or write the content of an object:

e The function mmu_copy_to_shadow creates a backup copy for an object,
whereas the function mmu_restore_from_shadow restores an object from
a backup copy. The function mmu_forget_shadow discards any backup copy
for an object.

e Using the functions mmu_copyin, mmu_copyout and mmu_copyout_prefer_shadow,
a consistency model can atomically read or write an object’s content.

Using the access control functions, a consistency model can request notification of
read or write operations on objects:

e The function mmu_trap_read_write configures access control such that the
consistency model is notified of reads and writes.

e The function mmu_trap_write configures access control such that the consi-
stency model is notified of writes.

e The function mmu_trap_none configures access control such that the consi-

stency model does not receive notifications.

4.1.4 Zone allocation (zone)

The zone allocator coordinates coarse-grained reservations among the nodes.

e The functions allocator_set_root_memory and allocator_get_root_memory

access the root memory, which is the basis of the distributed name service
within OSS.

e The function allocator_alloc reserves a memory region in the global allo-
cator for a node.

e The function allocator_free marks a memory region as unused.

e The functions allocator_discover, allocator_get_size, allocator_get_consistency_model
allocator_get_allocator and allocator_get_owner retrieve information
about memory regions from the global allocator.

e The function allocator_is_valid_address checks whether an address is
within the shared object space.

4.2 Network Communication

OSS exchanges network messages among nodes to establish and reorganize the
overlay network, synchronize cached objects in memory with respect to the applied
consistency model and configure nodes. The interface supports sending, forwarding
and droping messages. The send functions are categorized into request and response
functions, and in blocking and non blocking functions. When a send function is
called, OSS builds a PDU (see figure ??) which is passed to the overlay network.

4.2.1 Request/Response messaging

In general a conversation among nodes follows a request/reply scheme in which a
node sends a request to another node and awaits a response message. In case a
request handler itself needs to request further data from other nodes to respond
the actual request, the network module supports linking of multiple requests. In
particular, if a node receives a request, it is allowed to start a further request from
its request handler. The full processing of the request may be deferred until the
node has processed the response of the second request. The following functions
allow a request /reply comunication among nodes:

e comm_send_sync_req_to sends a request to nodes and blocks until the node
has processed all response messages.

e comm_send_async_req_to is the same as comm_send_sync_req_to but ne-
ver blocks. Response messages are processed in the background.

e comm_send_async_linked_req_to sends a new unblocking request from a
network request handler. The actual request is linked to the new request and
will be reprocessed after the node has processed the response message of the
new request. A request handler which calls this function must return with
-E_PDU_LINKED.

e comm_send_sync_resp sends a message in response to a request message.
This function will never block.

e comm_send_async_resp In the face of response functions will never block,

this is only an alias for comm_send_sync_resp to keep synchronious/asynchronious

messaging semantics.

4.2.2 Informational Messaging

If a message exchange does not await a response, OSS supports sending one way
or informational messages.

10

e comm_send_async_msg_to sends a message to nodes. This function will never
block and does not await any response messages.

4.2.3 Messaging forwarding

OSS allows forwarding of request messages directly from the request handler of
the message itself. It is allowed to forward the same message multiple times. Re-
sponse messages will be sent directly to the requester without the indirection of
the forwarding nodes.

e comm_forward_req_to forwards a request to another node.

5 How to implement Consistency Models

This section describes in a few steps how to implement an own consistency model
in OSS. Consistency models reside in the folder src/consistency, new implemen-
tations should also be stored there. First of all, the developer should create a new
code and header file for his implementation.

For his own implementation the developer can use the implementation of the
null consistency! as a template. The header file starts with an inclusion guard
macro definition which should follow the naming semantics of the already im-
plemented consistency models. At least one declaration (the pointer table of the
consistency model itself) must be placed in the header file by adding the following
line, where <NAME> is a placeholder for the name identifying the consistency model.

5.1 Function Pointer Table

Every consistency model must define a function pointer table for its callback func-
tions:

consistency_model_t <NAME>_consistency =

{

.name = "<NAME> consistency", // Name

.id = oss_<NAME>_consistency, // Internal identifier

.init = *ptr, // Ptr to init function or NULL
.fini = *ptr, // Ptr to fini function or NULL
.read_handler = #*ptr, // Ptr to read fault handler
.write_handler = *ptr, // Ptr to write fault handler
.event_handler = NULL, // Unused (shall be NULL)
.alloc_handler = *ptr, // Ptr to memory alloc handler

'File: consistency/nc.c (implementation) and consistency/nc.h (declarations)

11

.free_handler = *ptr, // Ptr to memroy free handler
.mspace = NULL // Internally used by mspaces allocator
I

5.2 Consistency Model Registration in OSS

To make the consistency model available to user applications, it has to be registered
into OSS. This is done by performing the following steps

1. Register the consistency model in the consistency control unit?. This is done
by appending the pointer of the consistency model’s local function pointer
table to the global function pointer table in the consistency control unit.
Beware of reordering the table entries. Additional consistency models may
only be appended to this table.

2. Add an appropriate named entry in the consistency model enumeration in
0SS’ global header file3. The entries in the enumeration must be in the same
order as in the global function pointer table. The entry oss_max_consistency
must always be the last entry in the enumeration.

5.3 Initializer and Finalizer

Code for preinitialization and finalization of the consistency model is placed in
initializer and finalizer functions, called before the application starts and after
the application terminates. These functions will be called automatically if their
function pointers are added to the function pointer table.

static void <NAME>_init() {...}

static void <NAME>_fini() {...}

5.4 Register PDU handlers

To participate in network communication, the consistency model must register
callback functions to handle network request and response messages of a specific
message type. It is recommended to register two different callback handlers. The
developer has to ensure to register only handlers for message types which have
not been registered before, because reregistering a message type will overwrite any
previous handler registration. The following steps describe the handler registration
for a new message type:

2File: consistency/consctl.c
3File: oss.h

12

1. Add a new request and an appropriate response message type to the PDU
header file*.

#define TYPE_<NAME>_REQUEST
#define TYPE_<NAME>_RESPONSE (TYPE_<NAME>_REQUEST ...

2. Include the network communication header file into the implementation file
of the new consistency model

#include "net/comm.h"

3. Register the PDU handlers by calling the following function. It is recom-
mended to perform the registration in the consistency model’s initialization
function.

pdu_register_handler (xreq_handler, TYPE_<NAME>_REQUEST) ;
pdu_register_handler (*resp_handler, TYPE_<NAME>_RESPONSE) ;

Registered handlers have the following signature like the example below:

static int req_handler(in_pdu_t *pdu)

5.5 Writing PDU handlers

The registered request and response handlers must interprete the subtype code
of the messages and delegate them to the correct subhandler. For a clean code
structure it is recommmended to implement only the interpretation of subtypes in
this function and delegate the messages to subhandlers. A sample implementation
could look like the following code snippet:

switch (pdu->header.subtype) {
case SUBTYPE_<NAME>:
return funcl(pdu);
break;
case ...

default: //ignore messages with unknown subtypes
dbg_printf (0, "invalid pdu subtype\n");
return PDU_SUCCESS;
b

Subhandlers have the same signature like registered request and response handlers.

4File: net/pdu.h

13

5.6 PDU subsystem

It is allowed to send new network messages from network handlers. But messaging
in this context is covered by the following restrictions

e no use of blocking message functions
e 1o request messaging from response handlers

Furthermore, network handlers must return immediately after message processing,
therefore it is not allowed to block within handlers. The return code of a handler
controls the postprocessing of messages. OSS supports the following return codes:

PDU_SUCCESS Handler processed succesfully. Request PDUs will be removed from
the queue

-E_PDU_LINKED Request has been linked with a new request and will be deferred
for later reprocessing (request PDUs only)

-E_PDU_DEFERRED Request has been deferred for later reprocessing (request PDUs
only)?

5.7 Page Fault Handler

The page fault handlers implement the consistency model as a finite state machine
on a per page basis. OSS signals access violations disjoined regarding read and write
faults. The finite state machine consists of multiple page states previously defined
by the developer. In conjunction with access right controlling® and read /write page
faults, raised on access violation, the machine performs its state transitions. The
read and write handlers must be added to the local function pointer table and
have the following structure:

static void <NAME>_read_handler(void *addr,
struct ucontext *context)

{

int state = mmu_get_state(addr);

switch (state) {
case STATE_1:

5This return code may be removed soon and therefore shall not be used for new handlers.
6 Access rights are configurable for all disjunct virtual memory pages and can allow/disallow
read and write access to it.

14

break;
case ...

default:
dbg_printf (0, "address %p: unknown state detected (%u)\n",
addr, state);
exit (EXIT_FAILURE) ;

The developer can perform state transitions by controlling the state of the
faulted pages with the following two functions:

int mmu_get_state(void *addr);
void mmu_set_state(void *addr, int state);
Additionally, the access rights of memory pages can be modified via
void mmu_trap_none(void *addr);
void mmu_trap_write(void *addr);

void mmu_trap_read_write(void *addr);

5.8 Exporting functions to the API

Functions are exported to the Application Programming Interface by writing wrap-
per functions prefixed with oss_. The function declaration must be included into
the global header file of OSS, included by the applications. The wrapper code must
be included in the corresponding source code file”.

"File: 0ss.h (declaration) and oss.c (implementation)

15

