linearpcf {spatstat} | R Documentation |
Computes an estimate of the linear pair correlation function for a point pattern on a linear network.
linearpcf(X, r=NULL, ..., correction="Ang")
X |
Point pattern on linear network (object of class |
r |
Optional. Numeric vector of values of the function argument r. There is a sensible default. |
... |
Arguments passed to |
correction |
Geometry correction.
Either |
This command computes the linear pair correlation function from point pattern data on a linear network.
The pair correlation function is estimated from the
shortest-path distances between each pair of data points,
using the fixed-bandwidth kernel smoother
density.default
,
with a bias correction at each end of the interval of r values.
To switch off the bias correction, set endcorrect=FALSE
.
If correction="none"
, the calculations do not include
any correction for the geometry of the linear network. The result is
an estimate of the first derivative of the
network K function defined by Okabe and Yamada (2001).
If correction="Ang"
, the pair counts are weighted using
Ang's correction (Ang, 2010). The result is an estimate of the
pair correlation function in the linear network.
Function value table (object of class "fv"
).
Ang Qi Wei aqw07398@hotmail.com and Adrian Baddeley Adrian.Baddeley@csiro.au http://www.maths.uwa.edu.au/~adrian/
Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis, University of Western Australia.
Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of events on a linear network, with applications to ecology and criminology. To appear in Scandinavian Journal of Statistics.
Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational implementation. Geographical Analysis 33, 271-290.
data(simplenet) X <- rpoislpp(5, simplenet) linearpcf(X) linearpcf(X, correction="none")